Supporting Information

for

Reaction Probability and Kinetics of H₂O Splitting on the Penta-NiAs₂ Monolayer from an Ab Initio Molecular Dynamics Investigation

Thi H. Ho,^{a,b} Hieu C. Dong,^{c,d} Viet Q Bui,^e Yoshiyuki Kawazoe^f and Hung M. Le^g

^aDivision of Computational Physics, Institute for Computational Science, Ton DucThang University, Ho Chi Minh City 700000, Vietnam.

^bFaculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.

^cFuture Materials and Devices Laboratory, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam.

^dThe Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam.

^eDepartment of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.

^fNew Industry Creation Hatchery Center, Tohoku University, Sendai, 980-8579, Japan.

^gInstitute of Research and Development, Duy Tan University, Danang 550000, Vietnam.

Email: hohuynhthi@tdtu.edu.vn, hung.m.le@hotmail.com.

Figure S1: Fitting plots for rate constant of the first O-H dissociation with respect to initial kinetic energy of 1 eV (left panel) and 2 eV (right panel) for zeroth, first, and second order types, respectively. In each plot, n is the concentration ratio of remaining H_2O samples with respect to MD time. The red lines represent the fitting line and blue dots are actually data.

Figure S2: Fitting plots for rate constant of the second O-H dissociation with respect to initial kinetic energy of 1 eV (left panel) and 2 eV (right panel) for zeroth, first, and second order types, respectively. In each plot, n is the concentration ratio of remaining H_2O samples with respect to MD time. The red lines represent the fitting line and blue dots are actually data.

Fig. S3 (a)-(f) Snapshots of the H_2O molecule on the NiAs₂ surface for a non-reacting case, (g) two O-H distances (red solid and blue dotted lines) and projected distance between O and the NiAs₂ surface (green dashed line) with respect to time. The black dots and vertical lines indicate selected configurations shown in (a)-(f).