Electronic Supplementary Information (ESI)

for

Identification of previously unreported co-crystal form of acetazolamide: a combination of multiple experimental and virtual screening methods

Alex N. Manin^a, Ksenia V. Drozd^a, Artem O. Surov^a, Andrei V. Churakov^b, Tatyana V. Volkova^a, German L. Perlovich^{a,*}

^aG.A. Krestov Institute of Solution Chemistry RAS, 153045, Ivanovo, Russia ^bInstitute of General and Inorganic Chemistry RAS, Leninsky Prosp. 31, 119991, Moscow, Russia ^{*}Corresponding author: glp@isc-ras.ru

Contents

Page

S1	Hansen solubility parameter	2
Figure S1	DSC heating for the selected (ACZ+PABA) mixtures at a heating rate of 10° C·min ⁻¹ .	4
Figure S2	Time resolved XRPD patterns for the LAG reaction of ACZ and PABA $(1:1)$ in the presence of (a) ACN and (b) H ₂ O	5
Figure S3	Experimental XRPD patterns of the [ACZ+4-OHBA] co-crystal obtained by LAG with ACN and H ₂ O after 30 min	6
Figure S4	Illustration of ACZ dimers connected by $N_{sulfonamide}$ -H···O _{acetamide} hydrogen bonds (colored in blue) in the crystal structures of (a) [ACZ+PABA] (1:1) and (b) pure ACZ	7
Figure S5	DSC/TG/DTG curves and mass-spectrum of ACZ	8
Table S1	Group contribution parameters and associated molar volumes of the compounds according to the Hoftyzer–Van Krevelen method	9
Table S2	Molar volumes and HSPs for the selected compounds and solvents	11
Table S3	Sums of the intermolecular interaction energies $(kJ \cdot mol^{-1})$ of the different types of molecules in [ACZ+4-OHBA] (1:1) and [ACZ+PABA] (1:1) calculated by the CrystalExplorer method	12
Table S4	Solution pH, eutectic concentrations of the ACZ and coformers, calculated solubility of the co-crystals at 25.0°C	13
Table S5	Coefficients of correlation equation (10) for the clusters including the considered compound as one from the components of the two-component crystal	14
Table S6	Experimental temperature dependences of acetazolamide (ACZ) and saccharin (Sacch) saturation vapor pressure	15
Table S7	Thermodynamic parameters of sublimation of the compounds studied	16
Table S8	Results of estimating the formation thermodynamics of two-component acetazolamide crystals	17
Table S9	Results of molecular complementarity (MC) methods, multi-component score and ΔE values derived from the Hydrogen Bond Propensity and Molecular Electrostatic Potential calculations	18
S2	References	19

S1. Hansen solubility parameter

To predict the substance physicochemical properties, such as solubility, melting point, etc., it is possible to use solubility parameters.¹ Cohesion energy represents the sum of the forces (van der Waals interactions, covalent, hydrogen and ionic bonds) which hold the substance in its original state. Cohesion energy can also be defined as the energy that must be overcome in order to move a substance molecule from the liquid or solid phase to the gaseous one.¹ Cohesion energy per unit volume is called cohesion energy density (CED). CED can be used to calculate the solubility parameter (δ) as follows:²

$$\delta = (CED)^{0.5} = \left(\frac{\Delta E_V}{V_m}\right)^{0.5}$$
 S1

where ΔE_V is the evaporation energy, V_m is the molar volume. Parameter δ is measured in the following units: (J/cm³)^{0.5}, MPa^{0.5} or (cal/cm³)^{0.5}, where 1(cal/cm³)^{0.5} is equivalent to 2.0421 MPa^{0.5} or (J/cm³)^{0.5}.

Recently, Hansen's solubility parameters (HSPs) have been increasingly used to assess the solubility of drugs. In the Hansen approximation, the parameters of any organic substance consist of three components: solubility parameters characterized by the dispersion forces δ_d , polarization interactions δ_p and interactions resulting from the formation of hydrogen bonds δ_h . The total solubility parameter δ_t , or the three-dimensional solubility parameter, is determined as follows:

$$\delta_t = (\delta_d^2 + \delta_p^2 + \delta_h^2)^{0.5}$$
 S2

Various theoretical and experimental methods based on solubility, calorimetry, sublimation, evaporation, reverse gas chromatography, and group contribution were used to estimate the HSPs of the substances.³ Each component of the solubility parameter (δ_d , δ_p , δ_h) was calculated in the following way:^{4,5}

$$\delta_{d} = \frac{\sum_{i} F_{d_{i}}}{\sum_{i} V_{i}}$$
S3
$$\delta_{p} = \frac{\left(\sum_{i} F_{p_{i}}^{2}\right)^{0.5}}{\sum_{i} V_{i}}$$
S4

$$\delta_{h} = \left(\frac{\sum_{i} F_{h_{i}}}{\sum_{i} V_{i}}\right)^{0.5}$$
S5

where *i* is the structural group within the molecule, F_{d_i} is the group contribution to the dispersion forces, F_{p_i} is the group contribution to the polarization forces, F_{h_i} is the group contribution to the hydrogen bonding energy, and V_i is the group contribution to the molar volume.

The miscibility of compounds can be evaluated by various approaches, all of which are based on the general principle of "like dissolves like". In other words, compounds with similar δ values are more likely dissolve each other. Van Krevelen and Hoftyzer determined the miscibility of two compounds using $\Delta \overline{\delta}$, which is calculated as follows:

$$\Delta \overline{\delta} = \left[(\delta_{d2} - \delta_{d1})^2 + (\delta_{p2} - \delta_{p1})^2 + (\delta_{h2} - \delta_{h1})^2 \right]^5$$
 S6

Later, Krevlen et al. suggested that good solubility could be achieved if $\Delta \overline{\delta} < 5$ MPa^{0.5.5} Besides this, Bagley et al. noticed that the effects of δ_d and δ_p are thermodynamically similar, while the effect of δ_h differs in its nature from the others. In this regard, they introduced a volume dependent solubility parameter - δ_v :⁶

$$\delta_v = (\delta_d^2 + \delta_p^2)^{0.5}$$
 S7

Subsequently, the coefficient $R_{a(v)}$ was used to determine the solubility of two compounds:

$$R_{a(\nu)} = \left[4(\delta_{\nu 2} - \delta_{\nu 1})^2 + (\delta_{h 2} - \delta_{h 1})^2 \right]^5$$
 S8

A two-dimensional plot of the δ_{ν} dependence on δ_{h} is called the Bagley diagram. This diagram has been used for various purposes, including the study of the solubility (miscibility) of components and predicting the duration of the intestinal absorption of different drugs.^{7,8} In the study of the drug/polymer miscibility, it was found that these two components are well miscible if $R_{a(\nu)} \leq 5.6$ MPa^{0.5.7}

Greenhalgh et al. used the difference in the total solubility parameter between the drug and the carrier ($\Delta \delta_t$) as a tool for predicting miscibility:⁹

$$\Delta \delta_t = \left| \delta_{t2} - \delta_{t1} \right|$$
 S9

where t1 and t2 are the carrier and the drug, respectively. In their work, studying many API/carrier systems as an example, the authors showed the general trend, indicating that systems with $\Delta \delta_t < 7$ MPa^{0.5} are miscible, while systems with $\Delta \delta_t > 10$ MPa^{0.5} are immiscible.⁹

Figure S1. DSC heating for the selected (ACZ+PABA) mixtures at a heating rate of $10^{\circ}C \cdot min^{-1}$. 1. $X_{PABA}=0$; 2. $X_{PABA}=0.09$; 3. $X_{FBP}=0.11$; 4. $X_{PABA}=0.2$; 5. $X_{PABA}=0.33$; 6. $X_{PABA}=0.4$; 7. $X_{PABA}=0.5$; 8. $X_{PABA}=0.6$; 9. $X_{PABA}=0.67$; 10. $X_{PABA}=0.8$; 11. $X_{PABA}=0.89$; 12. $X_{PABA}=0.91$; 13. $X_{PABA}=1$

(b)

Figure S2. Time resolved XRPD patterns for the LAG reaction of ACZ and PABA (1:1) in the presence of (a) ACN and (b) H_2O

Figure S3. Experimental XRPD patterns of the [ACZ+4-OHBA] co-crystal obtained by LAG with ACN and H_2O after 30 min

(b) **Figure S4.** Illustration of ACZ dimers connected by $N_{sulfonamide}$ -H \cdots O_{acetamide} hydrogen bonds (colored in blue) in the crystal structures of (a) [ACZ+PABA] (1:1) and (b) pure ACZ

Figure S5. (a) DSC/TG/DTG curves of ACZ; (b) mass-spectrum of ACZ

Compound	Structural group	Ouantity	$\frac{E}{F_{1}}$	E^{2}	F_{i} .	aV.
I. I. I.	<i>b b b b b b b b b b</i>		$(1,m^3)^{0.5},m^{-1}$	r_{p_i} , (1.2)05 11	I_{h_i} , I_{m_0}	$cm^3 \cdot mol^{-1}$
	~~~~			$(J \cdot m^3)^{0.3} \cdot mol^{-1}$	J.11101 -	
Acetazolamide (ACZ)	CH ₃	1	420	0	0	33.5
$H_3C_{\sim}/O$	=C<	2	140	0	0	-11.0
	-CO-	1	290	592900	2000	10.8
	-NH-	1	160	44100	3100	4.5
N—N	$-NH_2$	1	300	193600	8600	19.2
	-N=	2	40	2560000	10000	10.0
	-S-	1	440	-	-	12.0
	$-SO_2-$	1	1129	1844164	11670	51.0
	Σ		2919	5234764	35370	130.0
Salicylic acid (SA)	Phenylene (o, m, p)	1	1270	12100	0	52.4
НОО	-СООН	1	530	176400	10000	28.5
	–OH	1	210	250000	20000	13.0
	Σ		2010	438500	30000	93.9
4-Hydroxybenzoic acid	Phenylene (o, m, p)	1	1270	12100	0	52.4
(4-OHBA)	-СООН	1	530	176400	10000	28.5
НОО	–OH	1	210	250000	20000	13.0
ĺ	$\Sigma$		2010	438500	30000	93.9
4-Aminobenzoic acid	Phenylene (o m n)	1	1270	12100	0	52.4
(PARA)	-COOH	1	530	176400	10000	28.5
HO, O	_NH.	1	300	193600	8600	10.2
The second secon	NH2 S	1	2100	382100	18600	100.1
			2100	302100	10000	100.1
Ť						
	CU	2	0.40	0	0	(7.0
_1 neophylline (1ph)	$-CH_3$	Z	840	0	0	07.0

Table S1. Group contribution parameters and associated molar volumes of the compounds according to the Hoftyzer–Van Krevelen method

0	=CH	1	200	0	0	13.5	
H ₂ C, H	=C<	2	140	0	0	-11.0	
	-CO	2	580	2371600	4000	21.6	
	-NH-	1	160	44100	3100	4.5	
	-N<	2	40	2560000	10000	-18.0	
$CH_3$	-N=	1	20	640000	5000	5.0	
	Σ		1980	5615700	22100	82.6	
Caffeine (Caf)	-CH ₃	3	1260	0	0	100.5	
O II CH3	=CH-	1	200	0	0	13.5	
H ₃ C N	=C<	2	140	0	0	-11.0	
	-CO	2	580	2371600	4000	21.6	
O N N	-N<	3	60	5760000	15000	-27.0	
L CH3	-N=	1	20	640000	5000	5.0	
- 0	Σ		1972	8771600	24000	102.6	
Saccharin (Sacch)	=CH-	4	800	0	0	54.0	
0	=C<	2	140	0	0	-11.0	
	–CO	1	290	595900	2000	10.8	
NH	-NH-	1	160	44100	3100	4.5	
S S	$-SO_2-$	1	1129	1844164	11670	51.0	
O U	Σ		2519	2481164	16770	109.3	

^a The molar volume is calculated according to [4]

	$V_m$ ,	$^{\mathrm{a}}\delta_{d}$ , MPa $^{0.5}$	^b $\delta_p$ , MPa ^{0.5}	$^{c}\delta_{h}$ , MPa ^{0.5}	$^{\mathrm{d}}\delta_{t}$ , MPa ^{0.5}	$^{\rm e}\delta_{v}$ , MPa ^{0.5}	$^{\rm f}\Delta\overline{\delta}$ , MPa ^{0.5}	$^{g}\Delta\delta_t$ , MPa ^{0.5}	$^{h}R_{a(v)}$ , MPa ^{0.5}
	cm ³ ·mol ⁻¹								
ACZ	130.0	22.5	17.6	16.5	33.0	28.5	-	-	-
SA	93.9	21.4	7.1	17.9	28.8	22.5	10.7	4.2	12.3
4-OHBA	93.9	21.4	7.1	17.9	28.8	22.5	10.7	4.2	12.3
PABA	100.1	21.0	6.2	13.6	25.8	21.9	11.9	7.2	14.5
Tph	82.6	24.0	28.7	16.4	40.8	37.4	11.2	7.9	17.7
Caf	102.6	19.2	28.9	15.3	37.9	34.7	11.8	4.9	12.5
Sacch	109.3	23.0	14.4	12.4	29.9	27.2	5.2	3.1	8.6
ACN	52.9	15.3	18.0	6.1	24.4	23.6			
EtOAc	98.6	15.8	5.3	7.2	18.2	16.7			
THF	81.9	16.8	5.7	8.0	19.5	17.7			
AO	73.8	15.5	10.4	7.0	19.9	18.7			
EtOH	58.6	15.8	8.8	19.4	26.5	18.1			
МеОН	40.6	14.7	12.3	22.3	29.4	19.2			
$H_2O$	18.0	15.5	16.0	42.3	47.8	22.3			

 Table S2. Molar volumes and HSPs for the selected compounds and solvents

**Table S3.** Sums of the intermolecular interaction energies  $(kJ \cdot mol^{-1})$  of the different types of molecules in [ACZ+4-OHBA] (1:1) and [ACZ+PABA] (1:1) calculated by the CrystalExplorer method

	ACZ-ACZ	ACZ-CF	CF-CF	E _{latt}
[ACZ+4-OHBA] (1:1)	-99.7 ( <b>30.5%</b> )	-210.7 ( <b>64.5%</b> )	-16.3 ( <b>5.0%</b> )	-326.6
[ACZ+PABA] (1:1)	-64.1 ( <b>20.3%</b> )	-244.5 (77 <b>.5%</b> )	-7.1 ( <b>2.2%</b> )	-315.7

	Final pH	$[ACZ]_{eu}$ , mol·L ⁻¹	$[CF]_{eu}$ , mol·L ⁻¹	$S_{CC}$ , mol·L ⁻¹
Initial pH 2.0				
[ACZ+PABA](1:1)	2.9	$(3.9\pm0.2)\cdot10^{-3}$	(2.1±0.2)·10 ⁻²	(9.0±0.1)·10 ⁻³
[ACZ+4-OHBA] (1:1)	2.3	$(3.8\pm0.4)\cdot10^{-3}$	$(1.6\pm0.4)\cdot10^{-2}$	$(7.7\pm0.6)\cdot10^{-3}$
Initial pH 7.4				
[ACZ+PABA](1:1)	5.1	$(4.0\pm0.1)\cdot10^{-3}$	(5.4±0.1)·10 ⁻²	$(1.5\pm0.2)\cdot10^{-2}$
[ACZ+4-OHBA] (1:1)	5.0	$(4.2\pm0.06)\cdot10^{-3}$	(5.4±0.1)·10 ⁻²	$(1.5\pm0.2)\cdot10^{-2}$

**Table S4**. Solution pH, eutectic concentrations of the ACZ and coformers, calculated solubility of the co-crystals at 25.0°C

**Table S5.** Coefficients of correlation equation (S10) for the clusters including the considered compound as one from the components of the twocomponent crystal

$$T_{fus}(CC)/^{\circ}C = A + B \cdot T_{fus}(API/CF)/^{\circ}C$$
 S10

N⁰	API	(API:CF)	Α	В	R ^a	$\sigma^{b}$	n ^c	$T_{fus}([API + ACZ)/^{\circ}C$
1	Salicylic Acid	1:1	$51.9 \pm 8.9$	$0.549 \pm 0.045$	0.9079	14.7	34	198.2
2	4-hydroxybenzoic acid	1:1	$42.1 \pm 10.6$	$0.74\pm0.05$	0.938	15.1	27	238.7
3	4-aminobenzoic acid	1:1	$52.7 \pm 10.5$	$0.62 \pm 0.05$	0.935	14.4	21	218.7
4	Theophylline	1:1	$79.4 \pm 13.0$	$0.571 \pm 0.075$	0.8079	18.5	33	231.6
5	Caffeine	1:1	$42.7\pm9.0$	$0.673\pm0.045$	0.9512	16.0	26	222.1
6	Saccharine	1:1	$94.1 \pm 8.7$	$0.459 \pm 0.047$	0.8504	13.5	39	216.4

^a Pair correlation coefficient;

^b Standard deviation;

^c The number of points in the cluster

AC	CZ	Sa	cch
t, °C	P, Pa	t, °C	P, Pa
179.7	3.24.10-2	122	0.807
180.9	3.62.10-2	124	0.997
182.2	4.04.10-2	125	1.046
183.3	4.64.10-2	126	1.215
184.1	5.03.10-2	127	1.284
185.0	5.45.10-2	128	1.408
185.8	5.84.10-2	130	1.766
186.7	6.46.10-2	131	1.935
187.8	7.07.10-2	134	2.504
189.1	7.89.10-2	136	3.005
190.2	8.63.10-2	138	3.750
191.1	9.73.10-2	140	4.484
192.0	1.04.10-1	141	4.717
193.1	1.20.10-1	143	5.662
194.3	1.39·10 ⁻¹	-	-
$a \ln(P[Pa]) = (42.1 \pm 0)$	$(0.6) - (20599 \pm 285)/T; \sigma = 0$	$6.8 \cdot 10^{-3}$ ; r = 0.99733; F	= 5221; n = 15
	(15000 + 100) /T	10 10 3 0 0000	1.4

Table S6. Experimental temperature dependences of acetazolamide (ACZ)^a and saccharin (Sacch)^b saturation vapor pressure

^a ln(P[Pa]) =  $(38.7\pm0.3) - (15382\pm133)/T$ ;  $\sigma = 4.9 \cdot 10^{-3}$ ; r = 0.9996; n = 14

Compound	$\Delta H_{sub}^T$ , kJ·mol ⁻¹	$C_{p,cr}^{298}$ , J·mol ⁻¹ ·K ⁻¹ a	$\Delta G_{sub}^{298}$ , kJ·mol ⁻¹	$\Delta H_{sub}^{298}$ , kJ·mol ⁻¹	$\Delta S_{sub}^{298}$ , J·mol ⁻¹ ·K ⁻¹	$T \cdot \Delta S_{sub}^{298}$ , kJ·mol ⁻¹
Acetazolamide	171.3±2.5	250.1	95.5	177.5±2.6	275±12	82.0
Saccharin	127.9±1.1	136.8	60.5	130.2±1.6	233±7	69.7

 Table S7. Thermodynamic parameters of sublimation of the compounds studied

 ${}^{a}C_{p,cr}^{298}$  is calculated by Chickos' additive scheme [10], the calculation procedure error corresponds to a significant digit

N	Coformer (CF)	Molar ratio	$T_{fus}(API)$	$T_{fus}(CF)$	$T_{fus}(CC)$ a	$\Delta G^{0,298}_{sub}(CF)$	$\Delta H^{0,298}_{sub}(CF)$	$\Delta G_f^{0,298}(CC)$	$\Delta H_f^{0,298}(CC)$
		(ACZ:CF)	/ °C	/ °C	/ °C	/ kJ·mol⁻¹	/ kJ·mol ⁻¹	$/ kJ \cdot mol^{-1}$	$/ kJ \cdot mol^{-1}$
1	SA	1:1	266.5	158.1	198.2	38.5 ^b	96.6 ^b	7.4	10.5
2	4-OHBA	1:1	266.5	214.9	238.7	55.0 ^b	113.3 ^b	0.0	-9.2
3	PABA	1:1	266.5	187.3	218.7	52.5°	118.0 ^c	3.2	-3.8
4	Theophylline	1:1	266.5	271.5	231.6	69.1 ^d	132.5 ^d	-197.5 ^f	-336.6
5	Caffeine	1:1	266.5	236.1	222.1	53.0 ^e	108.1°	40.8	66.7
6	Saccharine	1:1	266.5	227.6	216.4	60.5	130.2	27.6	37.3

Table S8. Results of estimating the formation thermodynamics of two-component acetazolamide crystals

^a calculated by correlation equation (S10);

^b from [11].

^c from [12].

^d from [13].

^e from [14].

^f The high value is obtained due to the close melting points of API and CF. In this case, the algorithm does not predict adequate values of the thermodynamic functions, however, it unambiguously indicates the direction of the reaction.

carcarations			
	MC	Multi-component score	ΔE
ACZ+SA	PASS	-0.16	-2.6
ACZ+4OHBA	PASS	-0.13	12.4
ACZ+PABA	PASS	0.01	6.1
ACZ+Tph	FAIL	-0.11	17.1
ACZ+Caf	FAIL	0.01	4.7
ACZ+Sacch	FAIL	-0.10	-8.3

**Table S9.** Results of molecular complementarity (MC) methods, multi-component score and  $\Delta E$  values derived from the Hydrogen Bond Propensity and Molecular Electrostatic Potential calculations

#### S2. References

- 1. B.C. Hancock, P. York and R.C. Rowe, Int. J. Pharm., 1997, 148, 1.
- 2. J.H. Hildebrand and R.L. Scott, The solubility of nonelectrolytes, 1964, Dover Publications.
- 3. C.M. Hansen, Hansen solubility parameters: a user's handbook, second edition, 2007, CRC Press.
- 4. R.F. Fedors, Polym. Eng. Sci., 1974, 14, 147.
- 5. D.W. van Krevelen and K. te Nijenhuis, Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions, 2009, Elsevier Science.
- 6. E.B. Bagley, T.P. Nelson and J.M. Scigliano, J. Paint. Technol., 1971, 43, 35.
- 7. J. Albers, Hot-melt extrusion with poorly soluble drugs, 2008, Cuvillier.
- 8. J. Breitkreutz, Pharm. Res., 1998, 15, 1370.
- 9. D.J. Greenhalgh, A.C. Williams, P. Timmins and P.York, J. Pharm. Sci., 1999, 88, 1182.
- 10. J.S. Chickos and W. Acree Jr., J. Phys. Chem. Ref. Data, 2003, 32, 519.
- 11. G.L. Perlovich, T.V. Volkova and A. Bauer-Brandl, J. Pharm. Sci., 2006, 95, 2158.
- 12. T.V. Volkova, S.V. Blokhina, A.M. Ryzhakov, A.V. Sharapova, M.V. Ol'khovich and G.L. Perlovich, *J. of Therm. Anal. Calorim.*, 2016, **123**, 841.
- 13. A. Abdelaziz, D.H. Zaitsau, A. Buzyurove, A.A. Minakovf, S.P.Verevkin and C.Schick, *Thermochim. Acta*, 2019, **676**, 249.
- 14. V.N. Emel'yanenko and S.P. Verevkin, J. Chem. Thermodyn., 2008, 40, 1661.