Electronic Supplementary Information

Entangled Iodine and Hydrogen Peroxide Formation in Ice

Yong Su Baek, ^a Kitae Kim, ^{*bc} Alfonso Saiz-Lopez, ^d Dae Wi Min, ^e Bomi Kim, ^{bc} Wonyong

Choi^e and Cheol Ho Choi *a

^a Department of Chemistry and Green-Nano Materials Research Center, College of Natural

Sciences, Kyungpook National University, Sangyeok, Bukgu, Daegu 41566, South Korea

^b Korea Polar Research Institute (KOPRI), Incheon 21990, South Korea

^c Department of Polar Sciences, University of Science and Technology (UST), Incheon 21990,

South Korea

^d Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, 28006 Madrid, Spain

^e Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea

Contents

Figures SI 1 and 2

Tables SI 1-4

References for Supplementary information

Fig. SI 1 The optimized structures of (a) IO_2H^- and (b) IO_2H_2 complexes calculated using B3LYP/MIXED-level theory. The bond lengths (black) are in Å, while the Mulliken atomic charges (blue) are in atomic units. The binding energy between I⁻ and O₂H radical is -18.7 kcal/mol, while the binding energy between I⁻ and H₂O₂ is -3.5 kcal/mol. Weak charge transfer is indicated in (a), while complete transfer occurs in (b). The MIXED basis set was composed of the Stevens-Krauss (SBKJC) VDZ effective core potential basis set for I and the standard cc-pVTZ basis set for O and H.

Fig. SI 2 Relative changes in energy along the $I \cdot \rightarrow I_2^- \rightarrow I_3^-$ (red) and $O_2H \cdot \rightarrow IO_2H^- \rightarrow I \cdot ...H_2O_2$ (blue) pathways calculated using B3LYP/MIXED-level theory. The corresponding reaction enthalpies are presented in Table SI 1d–g. The MIXED basis set was composed of the Stevens-Krauss (SBKJC) VDZ effective core potential basis set for I and the standard cc-pVTZ basis set for O and H.

Table SI 1. The enthalpies of various elementary reactions calculated using B3LYP/MIXEDlevel theory, including zero-point energies. **a**, Formation of $\Gamma \cdot O_2$ complexes in the singlet and triplet states. **b**, Formation of IO₂H complexes in the singlet and triplet states through protonation by hydronium at low pH. **c**, Formation of IO₂H complexes in the singlet and triplet states at neutral pH in water. **d**, Formation of I_2^- in the doublet state. **e**, Formation of I_3^- in the singlet state. **f**, Formation of IO₂H⁻ in the doublet state. **g**, Formation of IO₂H₂ in the doublet state at low pH with hydronium ion. **h**, Dissociation of IO₂H₂ to I' and H₂O₂. The MIXED basis set was composed of the Stevens-Krauss (SBKJC) VDZ effective core potential basis set for I and the standard cc-pVTZ basis set for O and H.

Elementary reactions				Singlet	Triplet				
(a)	I ⁻	+	O ₂	\rightarrow	$I^- \cdot O_2$			-5.1* (0.3ª)	0.2* (-0.3 ^a)
(b)	$I^-{\boldsymbol{\cdot}}O_2$	+	H_3O^+	\rightarrow	IO_2H	+	H_2O	-170.7	-127.7
(c)	$I^-{\boldsymbol{\cdot}}O_2$	+	H_2O	\rightarrow	IO_2H	+	OH^-	74.8	117.8
(d)	I٠	+	I^-	\rightarrow	I_2^-			-30.2 ^b	
(e)	I_2^-	+	I_2^-	\rightarrow	I_3^-	+	I^-	-6.1 ^b	
(f)	I^-	+	$O_2H\cdot$	\rightarrow	$\mathrm{IO}_{2}\mathrm{H}^{-}$			-18.1 ^b	
(g)	$\rm IO_2H^-$	+	H_3O^+	\rightarrow	IO_2H_2	+	H_2O	-141.0 ^b	
(h)	IO_2H_2			\rightarrow	I٠	+	H_2O_2	2.8 ^b	

*The $I^- \cdot O_2$ structures were obtained using CASSCF(12,7)/MIXED-level theory. ^aValues were obtained with MCQDPT2(12,7)/MIXED, not including zero-point energy. ^bThe spin states of $I \cdot$, I^- , I_2^- , I_3^- , $O_2H \cdot$, $I^- \cdot O_2H \cdot$, IO_2H_2 and H_2O_2 are doublet, singlet, doublet, singlet, doublet, doublet, doublet, and singlet, respectively.

Table SI 2. The singlet and triplet excitation energies of the $\Gamma \cdot O_2$ complex calculated using MCQDPT2(12,7)/MIXED-level theory. The optimized structures of the $\Gamma \cdot O_2$ complex were obtained using CASSCF(12,7)/MIXED-level theory. Experimentally observed absorption from 280 to 330 nm did not correspond well to the theoretical excitation energies of the $\Gamma \cdot O_2$ complex. The MIXED basis set was composed of the Stevens-Krauss (SBKJC) VDZ effective core potential basis set for I and the standard cc-pVTZ basis set for O and H. The values are shown in nm.

	Singlet		Triplet
\mathbf{S}_1	309,960	T_1	517
S_2	1675	T_2	510
S_3	932	T ₃	173
S_4	843	T_4	172
S_5	226	T_5	169

Table SI 3. Values in the TD-DFT/B3LYP column correspond to the excitation energies of IO₂H in the singlet and triplet states. Values were calculated using TDDFT/B3LYP/MIXED at the optimized geometries. The oscillator strengths are shown in parentheses. Values in the MCQDPT2 column were obtained using the MCQDPT2(20,12)/MIXED-level theory for singlets and the MCQDPT2(12,7)/MIXED-level theory for triplets. The IO₂H singlet geometry was obtained with CASSCF(20,12)/MIXED, and the IO₂H triplet geometry was obtained with CASSCF(20,12)/MIXED, and the IO₂H triplet geometry was obtained with corresponded well to the singlet S₃ and S₄ states according to the TDDFT and MCQDPT2 theories. The MIXED basis set was composed of the Stevens-Krauss (SBKJC) VDZ effective core potential basis set for I and the standard cc-pVTZ basis set for O and H. The values are shown in nm.

	TD-DFT/B3LYP	MCQDPT2	Expt.	
Singlet				
S ₁	502 (0.001)	544		
S ₂	387 (0.002)	437		
S ₃	291 (0.005)	328	280 ~ 330	
S_4	260 (0.221)	308	280 ~ 330	
S_5	194 (0.004)	278		
Triplet				
T ₁	1016 (0.000)	41328	<u> </u>	
T ₂	1008 (0.000)	1252		
T ₃	892 (0.000)	574		
T ₄	832 (0.002)	546		
T ₅	742 (0.000)	541		

T ₆	639 (0.000)	238
T ₇	633 (0.003)	220

- T₈ 215 (0.000) 219
- T₉ 195 (0.837) 135

Table SI 4. Correlations between iodine concentration [I] (Fig. 4a) in an ice core from the east coast of Greenland (71° 30' N, 26° 72' W)¹ and hydrogen peroxide concentrations in ice cores from central Greenland, $[H_2O_2]_A$ (72° 34' N, 37° 38' W), and south Greenland, $[H_2O_2]_B$ (65° 11'N, 43° 49'W)² from 1773 to 1986 (Fig. 4b). Correlations between H₂O₂ concentrations and ozone [O₃] (Fig. 4c) over the North Atlantic (20° N–70° N, 75° W–0°)¹ and their significance are shown below. [I], $[H_2O_2]_A$ and $[H_2O_2]_B$ reflect data from 1950 to 1986. ρ is the Pearson's correlation coefficient, while significance is denoted by 'Sig.'

	$[I]-[H_2O_2]_A$	$[I]-[H_2O_2]_B$	$[H_2O_2]_A$ - $[H_2O_2]_B$
1773-1986			
ρ	0.164	0.218	0.371
Sig.	0.028	0.003	0.000
	[O ₃]-[I]	$[O_3]-[H_2O_2]_A$	$[O_3]_{A}$ - $[H_2O_2]_{B}$
1950-1986			
ρ	0.420	0.406	0.519
Sig.	0.011	0.014	0.001

Supplementary References

- C. A. Cuevas, N. Maffezzoli, J. P. Corella, A. Spolaor, P. Vallelonga, H. A. Kjær, M. Simonsen, M. Winstrup, B. Vinther, C. Horvat, R. P. Fernandez, D. Kinnison, J.-F. Lamarque, C. Barbante and A. Saiz-Lopez, *Nat. Commun.*, 2018, 9, 1–6.
- 2. A. Sigg and A. Neftel, *Nature*, 1991, **351**, 557–559.