SUPPLEMENTARY INFORMATION

Boron-Based Ternary Rb₆Be₂B₆ Cluster Featuring Unique Sandwich Geometry and Naked Hexagonal Boron Ring⁺

Ying-Jin Wang,^{*ab} Lin-Yan Feng,^b Li Xu,^a Xiang-Ru Hou,^a Nan Li,^a

Chang-Qing Miao,^a and Hua-Jin Zhai*^b

^aDepartment of Chemistry, Xinzhou Teachers University, Xinzhou 034000, Shanxi, China ^bNanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China

*E-mail: yingjinwang@sxu.edu.cn; hj.zhai@sxu.edu.cn

Supplementary Information – Part I

- **Table S1.**Cartesian coordinates for selected optimized structures of $Rb_6Be_2B_6$ cluster at the
PBE0/def2-qzvp level: the D_{3d} ($^1A_{1g}$) global-minimum (GM) versus the TS1 (D_{3d} ,
 $^1A_{1g}$) and TS2 (D_{3h} , $^1A_1'$) transition states (TSs).
- **Figure S1.** Alternative optimized low-lying structures of Rb₆Be₂B₆ cluster. Relative energies are shown in square brackets at the PBE0/def2-qzvp level with corrections for zero-point energies (ZPEs). Also shown are the relative energies for top five isomers at the single-point CCSD(T)/def2-qzvp//PBE0/def2-qzvp level. All energies are in eV.
- **Figure S2.** Two different σ bonding schemes for the BeRb₃ ligands in GM D_{3d} (¹A_{1g}) Rb₆Be₂B₆ cluster on the basis of adaptive natural density partitioning (AdNDP) analysis. Occupation numbers (ONs) are indicated. The three-center two-electron (3c-2e) σ scheme in (b) gives a relatively low ON value, indicating that the σ

bond is entirely delocalized within the tetrahedral BeRb₃ unit as presented in the 4c-2e σ scheme in (a).

- **Figure S3.** Comparison of the delocalized π/σ sextets of (a) D_{3d} (¹A_{1g}) GM Rb₆Be₂B₆ cluster with those of (b) model D_{6h} C₆ cluster and (c) benzene.
- **Figure S4.** Calculated bond distances in Å for (a) $TS_1 (D_{3d}, {}^1A_{1g})$ and (d) $TS_2 (D_{3h}, {}^1A_{1'})$ structures of $Rb_6Be_2B_6$ cluster, along with their (b/e) Wiberg bond indices (WBIs) and natural atomic charges (c/f; in |e|) from the natural bond orbital (NBO) analyses at the PBE0/def2-qzvp level.
- **Figure S5.** Displacement vectors for the soft, imaginary vibrational modes of the TS_1 and TS_2 structures.

Supplementary Information – Part II

A short movie extracted from the BOMD simulation for $Rb_6Be_2B_6$ cluster. The simulation was performed at 300 K for 20 ps. The movie roughly covers a time span of 6 ps.

Figure S1. Alternative optimized low-lying structures of Rb₆Be₂B₆ cluster. Relative energies are shown in square brackets at the PBE0/def2-qzvp level with corrections for zero-point energies (ZPEs). Also shown are the relative energies for top five isomers at the single-point CCSD(T)/def2-qzvp/PBE0/def2-qzvp level. All energies are in eV.

Figure S2. Two different σ bonding schemes for the BeRb₃ ligands in GM D_{3d} (¹A_{1g}) Rb₆Be₂B₆ cluster on the basis of adaptive natural density partitioning (AdNDP) analysis. Occupation numbers (ONs) are indicated. The three-center two-electron (3c-2e) σ scheme in (b) gives a relatively low ON value, indicating that the σ bond is entirely delocalized within the tetrahedral BeRb₃ unit as presented in the 4c-2e σ scheme in (a).

Figure S3. Comparison of the delocalized π/σ sextets of (a) D_{3d} (¹A_{1g}) GM Rb₆Be₂B₆ cluster with those of (b) model D_{6h} C₆ cluster and (c) benzene.

Figure S4. Calculated bond distances in Å for (a) $TS_1 (D_{3d}, {}^1A_{1g})$ and (d) $TS_2 (D_{3h}, {}^1A_{1'})$ structures of $Rb_6Be_2B_6$ cluster, along with their (b/e) Wiberg bond indices (WBIs) and natural atomic charges (c/f; in |e|) from the natural bond orbital (NBO) analyses at the PBE0/def2-qzvp level.

Figure S5. Displacement vectors for the soft, imaginary vibrational modes of the TS_1 and TS_2 structures.

 TS_1

Table S1. Cartesian coordinates for selected optimized structures of $Rb_6Be_2B_6$ cluster at the
PBE0/def2-qzvp level: the D_{3d} ($^1A_{1g}$) global-minimum (GM) versus the TS1 (D_{3d} ,
 $^1A_{1g}$) and TS2 (D_{3h} , $^1A_1'$) transition states (TSs).

Rb₆**Be**₂**B**₆ **GM** (*D*_{3d}, ¹**A**_{1g})

В	0.79666800	1.37986900	0.00000000
В	-1.59333600	0.00000000	0.00000000
В	-0.79666800	1.37986900	0.00000000
В	1.59333600	0.00000000	0.00000000
В	0.79666800	-1.37986900	0.00000000
В	-0.79666800	-1.37986900	0.00000000
Be	0.00000000	0.00000000	1.04521700
Be	0.00000000	0.00000000	-1.04521700
Rb	-2.38064000	-1.37446300	-2.91883200
Rb	0.00000000	2.74892700	-2.91883200
Rb	2.38064000	-1.37446300	-2.91883200
Rb	2.38064000	1.37446300	2.91883200
Rb	0.00000000	-2.74892700	2.91883200
Rb	-2.38064000	1.37446300	2.91883200

Rb₆Be₂B₆ TS₁ (D_{3d}, ¹A_{1g})

В	0.00000000	1.59235900	0.02400300
В	-1.37902400	-0.79618000	0.02400300
В	-1.37902400	0.79618000	-0.02400300
В	1.37902400	0.79618000	-0.02400300
В	1.37902400	-0.79618000	0.02400300
В	0.00000000	-1.59235900	-0.02400300
Be	0.00000000	0.00000000	1.04432700

Be	0.00000000	0.00000000	-1.04432700
Rb	-2.37331000	-1.37023100	-2.91919500
Rb	0.00000000	2.74046200	-2.91919500
Rb	2.37331000	-1.37023100	-2.91919500
Rb	2.37331000	1.37023100	2.91919500
Rb	0.00000000	-2.74046200	2.91919500
Rb	-2.37331000	1.37023100	2.91919500

$Rb_6Be_2B_6TS_2(D_{3h}, {}^1A_1')$

В	1.39248700	0.80395200	0.00000000
В	-1.39248700	0.80395200	0.00000000
В	0.00000000	1.57697000	0.00000000
В	1.36569600	-0.78848500	0.00000000
В	0.00000000	-1.60790500	0.00000000
В	-1.36569600	-0.78848500	0.00000000
Be	0.00000000	0.00000000	1.04792800
Be	0.00000000	0.00000000	-1.04792800
Rb	-2.37416000	1.37072200	-2.93360200
Rb	2.37416000	1.37072200	-2.93360200
Rb	0.00000000	-2.74144400	-2.93360200
Rb	2.37416000	1.37072200	2.93360200
Rb	0.00000000	-2.74144400	2.93360200
Rb	-2.37416000	1.37072200	2.93360200