Electronic Supplementary Information

Tailoring hybrid three component photoinitiating system for 3D printing

C. Ley^{a*}, A. IShak^a, B. Metral^a, J. Brendlé^b, X. Allonas^a

^aLPIM, UHA, 3b rue A. Werner 68200 Mulhouse. ^bIS2M, CNRS UMR 7361, 15 Rue Jean Starcky, 68057 Mulhouse.

Figure ESI1: effect of clay concentration on the Optical properties of the anionic dye Rose Bengal.

Figure ESI2: triplet excited state spectra of RB⁻ as a function of clay concentration.

Figure ESI3: Newtonian behaviour of the DMSO SR349 monomer solution.

Figure ESI4: Effect of DMSO content on the monomer viscosity.

Figure ESI5: effect of clay concentration on the radical photogeneration efficiency at 10% wt DMS in monomer.

Table ESI 1: evolution of the resin viscosity as a function of [lap] at 10%wt DMSO content in the monomer

[Lap](g.L ⁻¹)	Viscosity [mPa·s]
0	667
1	697
2	711
4	704
10	787

Figure ESI6: Resolution test piece obtained without Laponite®

Figure ESI7: Resolution test piece obtained with 1g.L $^{-1}$ clay.