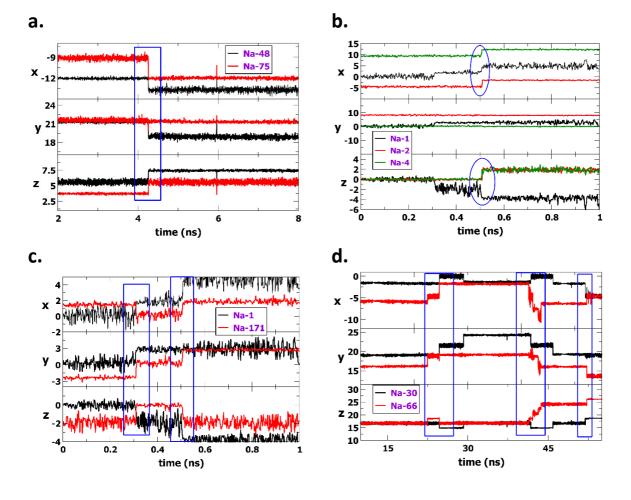
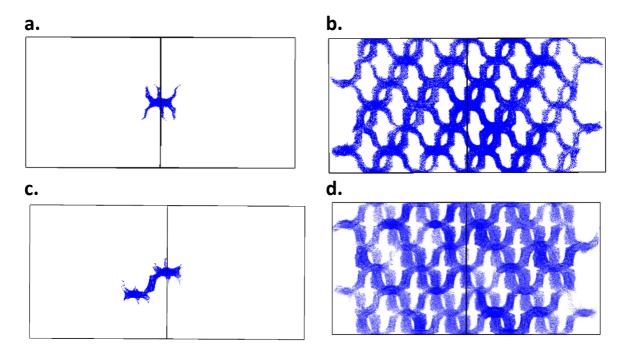
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2020


SUPPORTING INFORMATION

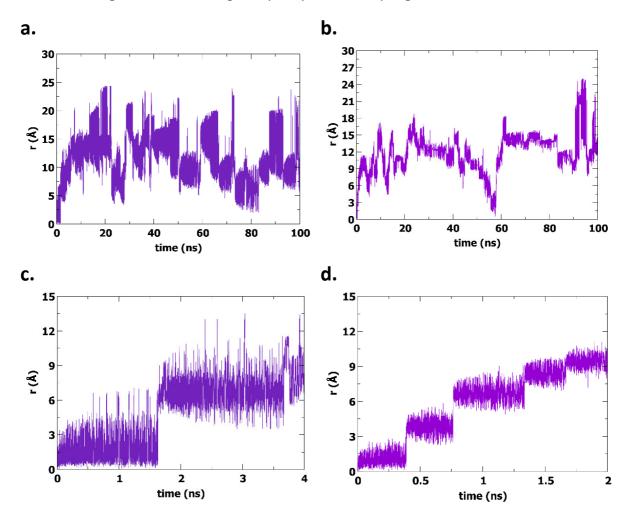
Accessing Slow Diffusion In Solids Employing Metadynamics Simulation

Krishnanjan Pramanik ^a, Sangkha Borah ^a, P. Padma Kumar ^{a*}

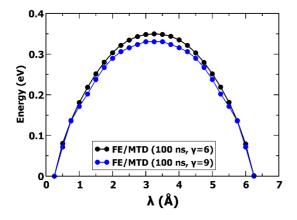
Figure S1


The time-evolution of the Cartesian coordinates of a few randomly picked Na⁺ ions and some of their respective neighbours from MTD simulation of Na₄Zr₂(SiO₄)₃ at 500 K (with the bias factor, γ = 6). The simultaneous changes in the x, y or z –coordinates of different ions indicates correlated hops of neighbouring ions – a few are highlighted.

^a Indian Institute of Technology, Guwahati. *E-mail: padmakumarp@iitg.ac.in


Figure S2:

Statistical distribution of the tagged Na+ ion (panels **a**, **b**) for NaZr₂P₃O₁₂, respectively for γ = 3, and 9, during the 100 ns of MTD simulation at 500 K; and (panels **c**, **d**) for Na₄Zr₂Si₃O₁₂, respectively for γ = 3, and 9 during the 200 ns MTD simulation at 500 K.


Figure S3:

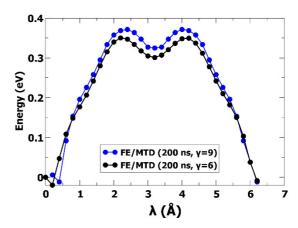

Distance of the tagged 'Na+' from its initial location as a function of the time elapsed (panel a) for NaZr₂(PO4)₃, and (panel b) for Na₄Zr₂(SiO₄)₃ from MTD simulations at 500 K, for bias factor γ = 6. In panels c) and d) an enlarged view of the short time behaviour of Na+ ions are shown respectively for NaZr₂(PO4)₃ and Na₄Zr₂(SiO₄)₃ systems. It shall be noted in Fig. S3 c) that the tagged ion makes several unsuccessful hops to its neighbours at 6.4 A within about 1.6 ns before hoping off from the initial Na1 site. Fig.S3 d) also shows several attempts by the tagged Na+ to reach the neighbouring Na2 site (~3.4 A) before it succeeds. The motion of the ion in its newer sites also follow this pattern. In Fig.S3 a) and b) there are instances when the tagged ion after diffusing off to distance sites returns *close* to the original site, respectively after durations of 80 ns and 60 ns. Thus, the ion explores the local minima quite extensively before diffusing off, thus ensuring the quality of the sampling.

Figure S4:

Free energy profiles for γ = 6 and 9, for NaZr₂P₃O₁₂ (left), and Na₄Zr₂Si₃O₁₂ (right) from MTD simulations at 500 K.

