Supplementary Material for

Enhanced Ions Diffusion Induced by Structural Transition for Li-Modified Borophosphene

Shiping Wang^{1,§}, Wei Zhang^{1,2,§}, Cai Lu¹, Yanhuai Ding¹, Jiuren Yin¹, Ping Zhang¹ and Yong Jiang^{1,*}

¹College of Civil Engineering & Mechanics, Xiangtan University, Hunan 411105, China

²College of electrical engineering, Zhejiang University of Water Resources and Electric Power, Zhejiang 310018, China

[§]Shiping Wang and Wei Zhang contributed equally to this work.

E-mail: jiangy@xtu.edu.cn

Figure S1. (a) The total energy of $B_{12}P_{12}$ at different cutoff energy when Monkhorst-Pack K-point mesh is set as $5 \times 4 \times 1$. **(b)** The total energy of $B_{12}P_{12}$ at different Monkhorst-Pack K-point mesh.

Figure S2. (a) the integration path in the Brillouin zone for the unit cell of monolayer borophosphene. **(b)** The band structure and partial density of states of monolayer borophosphene.

Figure S3. The structural information for Li adsorption in $B_{12}P_{12}$ at binding sites of (a) B_4P_2 -ring and (b) B_2P_4 -ring centers, respectively.

Figure S4. The differential charge density distribution of $\text{LiB}_{12}\text{P}_{12}$ at (a) α site and (b) β site, with red and blue areas illustrating charge sufficient and charge deficient regions respectively at isosurface of 0.01 e/Å³. The green ball represents lithium atom.

Figure S5. The average adsorption energy of $Li_x B_{12} P_{12}$ at Li concentration *x* of 1, 3, 6, 9, ..., and 24, respectively.

Figure S7. Top and side views of AIMD simulations for $Li_{60}B_{30}P_{30}$ supercell at 500K after 5 ps.