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1. Generation of the random packings 

A double-precision Fortran code has been developed to generate and characterize statistically random 
packings made of a required number of identical spheres. Let b be the radius of the spheres, and n0  be the 
target number of vicinal spheres; two spheres are here considered to be “vicinal” if their centre-to-centre 
distance is comprised between 2b and 3b. A first sphere is placed in (0,0,0) and an attempt is made to place 
a number n0 of vicinal spheres with a uniform spatial distribution. To this purpose, the components of the 
vector displacement of a candidate vicinal sphere from the central one, are generated by operating in 
spherical coordinates: by drawing at random three numbers u1, u2 and u3 from the uniform distribution in 

[0, 1], the spherical coordinates are computed as ρ = dmin
3 + u1 dmax

3 − dmin
3 1/3

 (distance from the 
reference centre), θ = arccos(1 − 2u2)  (azimuthal angle) and ϕ = 2π u3 (polar angle). Random numbers are 
generated by means of the routine “ran2”.1 Then, it is checked if such a candidate sphere does not overlap 
with all spheres already placed (the list of vicinal spheres is updated to speed up the check). If the candidate 
sphere is rejected, the drawing is repeated; after 106 rejections, the algorithm jumps to the next sphere to 
be placed. Once the cycle over n0 attempted placements is completed, the procedure is repeated by treating 
each of the placed spheres as the new central one. When the required number of spheres is reached, the 
spheres are ordered according to the increasing distance from the origin. The filling factor is computed as 
FF = ns(b/Rc)3 where Rc = 10b is a chosen cut-off radius and ns is the number of spheres whose centre fall 
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at a distance ≤ Rc from the origin. With such a kind of growth, each sphere is expected to have about the 
same statistical properties. The statistical analysis is made a posteriori. Two indicators are considered for 
each sphere: the actual number of vicinal spheres (nvic) and the three eigenvalues of the inertia tensor of the 
cluster formed by the sphere and the vicinal ones (the division by total mass of the cluster is made to get rid 
of its variable extension). Average values and standard deviations are computed for each indicator. A 
homogenous and locally isotropic random packing should feature both a small standard deviation for nvic and 
closeness of the three eigenvalues within the associated standard deviations. As example, the parameters 
for the sample with FF = 0.35 are the following (obtained by analysing the first 500 spheres from the origin): 
average nvic equal to 8.4 (with standard deviation of 2.4) and average eigenvalues of the scaled inertia tensor 
of the clusters equal to 1.63, 1.77 and 1.65 (with standard deviations of the order of 0.65) indicating local 
isotropy. 

2. Calculation of the magnetic field in the presence of hollow spheres 

2.1 Dipolar approximation 

Calculations at the dipolar approximation level have been implemented by means of two dedicated scripts 
(notebooks) written in Mathematica 11.1.  

The first notebook solves the magnetostatics problem outlined in reference 2 with proper boundary 
conditions for a single isolated spherical shell (or full sphere) of given permeability immersed in a uniform 
field H0. The resulting expression is then mapped onto a collection of spheres whose centres’ coordinates 
can be imported by the user (e.g. the Finney pack), and the total H field is calculated as the sum of all the 
contributions from the single spheres. The same notebook can output a figure displaying a 2D section of the 
magnetic field distribution across the sample (Fig. S1).  

 
Figure S1. zy section (x = 0) of the H field inside the Finney pack (500 hollow spheres) calculated at the dipolar 
approximation level. 

The second notebook performs a random homogeneous sampling inside a portion of space defined by the 
user and calculates the field distribution of Bz inside each subdomain (interstices, shells, cavities), providing 
the associated histograms and probability density functions. 
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Depending on the number of sampled points, the two notebooks typically evaluate in several minutes when 
parallelized on four i7-7700 CPU @ 3.60GHz cores. These notebooks are available upon request to the 
authors. 

2.2 Finite Element Method 

COMSOL Multiphysics 5.2 has been chosen for the FEM analysis of the magnetostatics problem. The packing 
structures utilized in the calculations are the Finney pack and the spherical ensembles generated with the 
algorithm described in section 1. To avoid edge effects in the simulations, a proper number of spheres is 
considered during the generation of the geometry to build an ensemble with total radius of about 10 times 
the external radius of a single sphere. The resulting magnetic field is sampled uniformly inside a cube of side 
10b centered in (0,0,0)  (Fig. S2).  

 
Figure S2. Ensemble of 1000 spheres arranged according to the Finney pack. The field distributions are generated by 
sampling the magnetic field inside a cube of side 10b located at the centre of the ensemble. Note that the emerging 
volume of the red cube in this picture amounts to 1/8 of the total. 

The sampling points are spaced 0.1b apart in the three dimensions on a regular cubic grid, for a total of 1013 
sampled points. The absence of edge effects has been verified by further increasing the size of the cluster 
considered in the FEM analysis and noting that no changes in the magnetic field distributions have occurred. 

As an example, the following list summarizes the details of the COMSOL simulation regarding silica 60H shells 
with a b⁄ = 0.8 arranged according to the random packing structure with FF = 0.35. 

• Model: spherical shell agglomerate in a liquid embedded in a spherical air domain (Infinite Element 
Domain). 

• Formulation: 3D FEM implementing a reduced scalar potential formulation for magnetostatics; external 
magnetic field applied in the whole computational domain. 

• Boundary Conditions: Laplace equation in the magnetic scalar potential solved by using infinite elements 
to simulate the unbounded air domain. 

• Mesh: 1,827,150 (2nd order) tetrahedral finite elements. 

• Solution: the final matrix system of 2nd order FEM is solved in the magnetic scalar potential (2,447,676 
degrees of freedom) by a conjugate gradient iterative solver with algebraic multigrid preconditioner. 
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• Post-Processing (output data): longitudinal component of the magnetic field computed in the whole 
domain on a regular cubic grid. 

3. 1H-NMR linewidth in the Redfield limit 

In the motional narrowing limit, the transverse relaxation rate T2,DM
1  is expressed by the zero-frequency 

spectral density (Fourier-Laplace transform) of the time self-correlation function of the magnetic anisotropy 
(expressed in angular frequency scale) Δω(r) = −γH(Bz(r) − Bz), where Bz(r) is the longitudinal component 
of the magnetic field at the location r, Bz is its mean value in the whole volume, and γH is the gyromagnetic 
ratio of the proton.3 Explicitly: 

T2,DM
1 = dt GΔω,Δω

∞

0
(t) (s.1)

GΔω,Δω(t) = V 1∫ dr ∫ dr0 Δω(r0)Δω(r) p(r,t|r0) (s.2)

where p(r,t|r0) is the probability to find the spin in r at time t, given that it was in r0 at time 0. By combining 
the above expressions, it follows: 

T2,DM
1 = V 1∫ dr ∫ dr0 Δω(r0)Δω(r) dt p(r,t|r0)∞

0
 (s.3)

For a random walk corresponding to free three-dimensional isotropic and unbounded diffusion with constant 
diffusion coefficient D, the analytical solution is: 

p(r,t|r0) = (4π D t) 3
2 e r r0

2

4 D t   (s.4)

where |⋅| stands for the Euclidean norm. Now consider that: 

dt p(r,t|r0)
τϵ

= (4π D) 1|r − r0| 1 erf
|r − r0|

4D τϵ
 (s.5)

for any τϵ > 0, where erf(⋅) indicates the Error Function. For |r − r0| ≠ 0, the limit τϵ → 0+ can be taken, 
yielding: 

dt p(r,t|r0)
0

= (4π D) 1|r − r0| 1 (s.6)

Thus: 

T2,DM
1 = (4π D) 1V 1 lim

Lc→0+ dr0 dr
Δω(r0)Δω(r)|r − r0| SLc(|r − r0|) (s.7)

where SLc(|r − r0|) is a step-function equal to 1 if |r − r0| ≥ Lc, null otherwise. The contribution at the 
singularity r = r0 is thus removed from the integration. In the practice, the above double-integral has been 
solved by resorting to the sample-mean stochastic integration strategy.4 Namely, Np pairs of points r0(ip) and 
r(ip) with ip = 1, … , Np were produced under the requirement r ip − r0 ip ≠ 0; each point was randomly 
drawn from the uniform spatial distribution in the region of volume V.  Then, the above double-integral was 
approximated by: 
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T2,DM
1 = (4π D) 1V

1
Np

Δω r0 ip Δω r ip
r ip − r0 ip

Np

ip 1

 (s.8)

Clearly, the summation tends to converge as the number of pairs of points increases. The calculations 
mentioned in the main text were performed by considering 108 pairs of points. Each calculation was repeated 
10 times to test the robustness of the method. 

4. Additional CPMG experiments 

Panel a of Fig. S3 reports the transverse relaxation rate 1/T2 estimated for CHCl3 in CDCl3 via the CPMG pulse 
sequence (panel b of Fig. S3) for different lengths of the semi-echo delay τ in the presence of hollow silica 
microspheres with a/b ≅ 0.9. It is evident that there exists a linear relation between T2

1 and √τ, at least for 
small τ values. A  τ-dependence of 1/T2 is a clear signature of slow motional effects acting on spin relaxation. 
In addition, it is worth mentioning that the specific √τ dependence is in accord with the expectation based 
on the slow-motional theory presented in ref. 5 (developed for a different kind of spin-probe dynamics, but 
adaptable by analogy to the present case).  The physical nature of such slow motional effects can be manifold, 
like diffusion in field gradients, slow chemical exchange, or slow molecular exchange between environments 
with different chemical shifts. 

 
Figure S3. a 1/T2 values for CHCl3 in CDCl3 estimated via CPMG experiments for various semi-echo delays τ in the 
presence of hollow silica microspheres with a/b ≅ 0.9. b CPMG pulse sequence. The full and empty rectangles represent 
hard 90° and 180° radiofrequency pulses, respectively. 

5. 1H-NMR linewidth from single-molecule FIDs 

To account for slow motions and the enhanced relaxation within the pores, the 1H-NMR linewidth of the 
chloroform’s signal in the presence of hollow silica microspheres was estimated through the generation of 
single-molecules Free Induction Decays (FIDs) considering a representative ensemble of spins diffusing in the 
sample. The FIDs were calculated by sampling the magnetic field in a cube of side 10b centered in (0,0,0) 
(see section 2.2). The magnetic field Bz was sampled every 0.1b in each direction, for a total of 1013 sampled 
points. 1013 cubic cells of side 0.1b were built around the sampled points, in which the field was assumed to 
be locally homogeneous and equal to that at the centre of the cell. The combination of all the 1013 cells 
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constituted the simulation box of volume V in which the molecules moved, namely a cube centered in (0,0,0) 
with sides spacing from −5.05b to 5.05b (Fig. S4). 

The trajectories of the molecules were represented by discretized 3D unrestricted random walks (RWs), 
generated through the Langevin equation: 

r(t + δt) = r(t) + N√2D δt (s.9)

N = ux, uy, uz  is a vector containing random variables picked at each new step from the standard normal 
distribution. The position at time t + δt is hence given by the position at time t plus a stochastic contribution 
that depends on the duration of the imposed timestep δt. A constant (i.e., position-independent) diffusion 
coefficient was considered, equal to that of CHCl3 in CDCl3 (D = 1.86 × 10-9 m2 s-1), as the experimental 
evidence suggested.6 103 independent random walks were generated in each simulation, to carefully sample 
the pathways followed by the spins. δt was selected to satisfy the condition √2D δt = 20 nm, namely that 
the root mean square displacements in the timestep were of the order of 0.03b. The RWs were computed by 
initially drawing a random point inside the simulation box with a uniform probability distribution. Periodic 
boundary conditions were applied to the box, even if they were not formally satisfied by the packing 
structures. As an example, Fig. S5 shows the box used for the simulations of hollow silica microspheres with 
a/b = 0.8 arranged as in the Finney pack. To check for the presence of spurious boundary effects, some 
simulations were also repeated using a larger box, sampling the magnetic field inside a cube of side 15b (the 
number of spheres considered in the preliminary FEM analysis was increased as well). No differences in the 
predicted linewidths were noticed. 

 
Figure S4. 2D sketch of the simulation box. The red dots portray the sampling points of the magnetic field Bz (from −5.0b 
to +5.0b in steps of 0.1b in the three dimensions). The green dot indicates a vertex of the simulation box, which hence 
comprises 1013 cubic cells of side 0.1b, represented here by the black squares. Consequently, the simulation box consists 
in a cube centered in (0,0,0) whose sides go from −5.05b to +5.05b. The field within a single cell is assumed to be 
homogeneous. 

The single molecules FIDs were built based the RWs data. At each step, the position of the spin (proton of 
CHCl3) was calculated and its resonance frequency computed according to the Bz value in that position. It was 
also assumed that the same field was experienced for the entire time step δt. The relevant spin Hamiltonian 
contained only the Zeeman interaction with the varying component of the local longitudinal magnetic field,7 
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as highlighted in the main text. At each step, it was also verified if the position of the spin fell within a silica 
shell cell. The criterion by which a cell is defined to be entirely occupied by silica or solvent is based on 
whether the centre of the cell was comprised or not in a hollow microsphere. Transverse relaxation with a 
characteristic time T2,pore was artificially introduced only in the silica-occupied cells to account for both slow 
motional effects and the enhanced spin relaxation inside the small silica pores. 

 
Figure S5. Picture of a simulation box of side 10.1b for silica shells with a/b = 0.8 arranged as in the Finney pack. 

The FID value for a single spin-probe at the nth step of the RW was computed as: 

FIDsingle spin-probe(n) = cos −∆ωloc(n) δt + phase × exp − m(n) δt
T2,pore

 (s.10) 

where: 

• ∆ωloc(n) is the position-dependent stochastic resonance frequency at the nth step  
• the phase is equal to the entire cosine argument at the step n − 1 (for the initial step, the phase is 0) 
• m(n) is a variable that counts how many steps have occurred inside silica-filled cells at the nth step 

After the generation of N random walk trajectories, the single FIDs were superimposed to get their ensemble 
average. The resulting signal was interpolated with a decaying exponential featuring an effective transverse 
relaxation time T2

*: 

FID(n) = 1
N

FIDsingle spin-probe,i(n) ≡N

i 1

exp − n δt
T2

*  (s.11) 

The linewidth was then computed as 1/ πT2
* . 

The calculations are performed imposing N = 103. Each calculation was repeated 6 times to test the 
robustness of the method. A total FID duration of 0.2 s was simulated (1.86 × 106 steps). The values of the 
single-molecules FIDs, as well as of the averaged overall FID, were stored only every 104 steps. The 
simulations require MATLAB to run and the code is available on request to the authors. 

6. 1H-NMR linewidth calculated for other T2,pore relaxation times and no T2,pore 

The following tables contains the linewidths computed for different values of T2,pore, from 1 ms to 10 ms. The 
table relative to T2,pore = 3 ms is reported in the main text. All the calculations were performed as mentioned 
in section 4. The last table (Tab. S10) reports the linewidth values obtained without artificially introducing 
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any spin relaxation inside the silica cells and it is worth to remind that, in this condition, the linewidths 
predicted are equal to those calculated by means of Eq. (s.8) (within the statistical uncertainties). 
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Table S1. T2,pore = 1 ms 
60

H 
Si

lic
a 

T2,pore =  
1 ms 

FF
0.25 0.30 0.35 0.40 0.62

a/b 
0.5 73.89 ± 0.06 89.2 ± 0.2 101.5 ± 0.2 107.7 ± 0.2 169.3 ± 0.2
0.6 64.71 ± 0.04 78.26 ± 0.08 89.1 ± 0.1 94.8 ± 0.2 150.10 ± 0.07
0.7 52.83 ± 0.04 63.66 ± 0.07 72.62 ± 0.09 77.4 ± 0.1 123.86 ± 0.09
0.8 37.09 ± 0.04 44.92 ± 0.04 51.39 ± 0.07 54.76 ± 0.05 88.63 ± 0.03
0.9 17.88 ± 0.01 21.83 ± 0.03 25.00 ± 0.03 26.76 ± 0.02 43.66 ± 0.03

RP
 S

ili
ca

 

T2,pore =  
1 ms 

FF
0.25 0.30 0.35 0.40 0.62

a/b 

0.5 67.49 ± 0.09 83.2 ± 0.1 94.4 ± 0.2 102.1 ± 0.1 166.40 ± 0.07
0.6 60.1 ± 0.1 73.9 ± 0.2 83.9 ± 0.2 90.6 ± 0.1 148.0 ± 0.1
0.7 49.42 ± 0.05 60.86 ± 0.09 69.36 ± 0.07 74.7 ± 0.1 122.11 ± 0.06
0.8 35.61 ± 0.02 43.64 ± 0.04 49.77 ± 0.04 53.61 ± 0.05 87.64 ± 0.07
0.9 17.56 ± 0.02 21.55 ± 0.01 24.62 ± 0.04 26.43 ± 0.02 43.32 ± 0.02

 
Table S2. T2,pore = 2 ms 

60
H 

Si
lic

a 

T2,pore =  
2 ms 

FF
0.25 0.30 0.35 0.40 0.62

a/b 

0.5 41.27 ± 0.08 48.17 ± 0.09 55.0 ± 0.1 57.4 ± 0.1 86.51 ± 0.06
0.6 35.57 ± 0.05 41.84 ± 0.08 47.74 ± 0.08 49.95 ± 0.06 76.55 ± 0.02
0.7 28.15 ± 0.06 33.50 ± 0.05 38.35 ± 0.07 40.24 ± 0.05 62.94 ± 0.04
0.8 19.39 ± 0.04 23.36 ± 0.03 26.66 ± 0.03 28.24 ± 0.05 44.96 ± 0.02
0.9 9.17 ± 0.01 11.126 ± 0.009 12.73 ± 0.01 13.57 ± 0.01 22.035 ± 0.007

RP
 S

ili
ca

 

T2,pore =  
2 ms 

FF
0.25 0.30 0.35 0.40 0.62

a/b 

0.5 34.61 ± 0.04 42.23 ± 0.08 48.18 ± 0.04 51.72 ± 0.07 83.65 ± 0.03
0.6 30.65 ± 0.03 37.43 ± 0.04 42.64 ± 0.04 45.83 ± 0.02 74.25 ± 0.04
0.7 25.13 ± 0.03 30.82 ± 0.03 35.06 ± 0.04 37.68 ± 0.03 61.21 ± 0.02
0.8 17.94 ± 0.03 21.97 ± 0.02 25.06 ± 0.03 26.91 ± 0.02 43.94 ± 0.02
0.9 8.810 ± 0.006 10.816 ± 0.002 12.372 ± 0.006 13.261 ± 0.007 21.719 ± 0.009

 
Table S3. T2,pore = 4 ms 

60
H 

Si
lic

a 

T2,pore =  
4 ms 

FF
0.25 0.30 0.35 0.40 0.62

a/b 

0.5 24.4 ± 0.2 27.8 ± 0.1 31.5 ± 0.1 31.90 ± 0.08 45.01 ± 0.04
0.6 20.5 ± 0.2 23.58 ± 0.04 26.84 ± 0.09 27.41 ± 0.09 39.71 ± 0.04
0.7 15.96 ± 0.05 18.33 ± 0.06 21.06 ± 0.07 21.64 ± 0.06 32.49 ± 0.04
0.8 10.55 ± 0.02 12.47 ± 0.02 14.26 ± 0.01 14.82 ± 0.02 23.05 ± 0.02
0.9 4.788 ± 0.008 5.748 ± 0.005 6.584 ± 0.007 6.963 ± 0.007 11.196 ± 0.008

RP
 S

ili
ca

 

T2,pore =  
4 ms 

FF
0.25 0.30 0.35 0.40 0.62

a/b 

0.5 17.86 ± 0.04 21.65 ± 0.02 24.66 ± 0.04 26.39 ± 0.03 42.06 ± 0.02
0.6 15.75 ± 0.01 19.12 ± 0.03 21.70 ± 0.02 23.27 ± 0.03 37.36 ± 0.02
0.7 12.84 ± 0.02 15.656 ± 0.009 17.79 ± 0.04 19.07 ± 0.03 30.77 ± 0.01
0.8 9.129 ± 0.008 11.103 ± 0.009 12.678 ± 0.008 13.584 ± 0.009 22.059 ± 0.006
0.9 4.436 ± 0.02 5.436 ± 0.002 6.214 ± 0.004 6.651 ± 0.006 10.883 ± 0.002
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Table S4. T2,pore = 5 ms 
60

H 
Si

lic
a 

T2,pore =  
5 ms 

FF
0.25 0.30 0.35 0.40 0.62

a/b 
0.5 21.0 ± 0.1 23.2 ± 0.1 26.7 ± 0.1 26.9 ± 0.1 36.68 ± 0.04
0.6 17.6 ± 0.1 19.88 ± 0.05 22.6 ± 0.1 22.85 ± 0.08 32.33 ± 0.07
0.7 13.38 ± 0.03 15.31 ± 0.04 17.58 ± 0.07 17.90 ± 0.05 26.40 ± 0.04
0.8 8.86 ± 0.02 10.26 ± 0.03 11.76 ± 0.02 12.12 ± 0.03 18.69 ± 0.03
0.9 3.896 ± 0.005 4.668 ± 0.008 5.353 ± 0.008 5.637 ± 0.006 9.036 ± 0.005

RP
 S

ili
ca

 

T2,pore =  
5 ms 

FF
0.25 0.30 0.35 0.40 0.62

a/b 

0.5 14.54 ± 0.02 17.56 ± 0.02 20.00 ± 0.03 21.33 ± 0.02 33.77 ± 0.02
0.6 12.78 ± 0.02 15.45 ± 0.01 17.59 ± 0.02 18.753 ± 0.006 29.95 ± 0.01
0.7 10.38 ± 0.02 12.620 ± 0.008 14.372 ± 0.004 15.33 ± 0.02 24.677 ± 0.006
0.8 7.33 ± 0.01 8.921 ± 0.007 10.201 ± 0.004 10.909 ± 0.004 17.675 ± 0.005
0.9 3.563 ± 0.001 4.359 ± 0.001 4.984 ± 0.002 5.337 ± 0.001 8.720 ± 0.002

 
Table S5. T2,pore = 6 ms 

60
H 

Si
lic

a 

T2,pore =  
6 ms 

FF
0.25 0.30 0.35 0.40 0.62

a/b 

0.5 18.8 ± 0.2 20.82 ± 0.09 23.6 ± 0.2 23.6 ± 0.1 31.12 ± 0.02
0.6 15.6 ± 0.1 17.37 ± 0.06 19.95 ± 0.06 19.89 ± 0.08 27.38 ± 0.04
0.7 11.82 ± 0.07 13.34 ± 0.05 15.17 ± 0.01 15.40 ± 0.04 22.30 ± 0.04
0.8 7.70 ± 0.02 8.82 ± 0.02 10.11 ± 0.02 10.39 ± 0.03 15.81 ± 0.02
0.9 3.31 ± 0.01 3.952 ± 0.006 4.541 ± 0.006 4.726 ± 0.003 7.597 ± 0.004

RP
 S

ili
ca

 

T2,pore =  
6 ms 

FF
0.25 0.30 0.35 0.40 0.62

a/b 

0.5 12.29 ± 0.02 14.75 ± 0.02 16.82 ± 0.02 17.89 ± 0.03 28.231 ± 0.007
0.6 10.77 ± 0.01 12.99 ± 0.02 14.78 ± 0.02 15.77 ± 0.01 25.018 ± 0.008
0.7 8.747 ± 0.009 10.58 ± 0.01 12.05 ± 0.01 12.865 ± 0.007 20.608 ± 0.006
0.8 6.161 ± 0.004 7.484 ± 0.004 8.531 ± 0.006 9.120 ± 0.004 14.757 ± 0.003
0.9 2.981 ± 0.001 3.640 ± 0.001 4.165 ± 0.001 4.456 ± 0.001 7.274 ± 0.002

 
Table S6. T2,pore = 7 ms 

60
H 

Si
lic

a 

T2,pore =  
7 ms 

FF
0.25 0.30 0.35 0.40 0.62

a/b 

0.5 17.41 ± 0.07 18.84 ± 0.06 21.46 ± 0.07 21.19 ± 0.09 27.16 ± 0.03
0.6 14.31 ± 0.06 15.60 ± 0.07 17.7 ± 0.1 17.70 ± 0.08 23.80 ± 0.08
0.7 10.60 ± 0.03 11.83 ± 0.05 13.67 ± 0.07 13.63 ± 0.02 19.49 ± 0.03
0.8 6.79 ± 0.01 7.76 ± 0.02 8.92 ± 0.03 9.10 ± 0.03 13.71 ± 0.01
0.9 2.917 ± 0.007 3.444 ± 0.005 3.963 ± 0.007 4.126 ± 0.003 6.554 ± 0.007

RP
 S

ili
ca

 

T2,pore =  
7 ms 

FF
0.25 0.30 0.35 0.40 0.62

a/b 

0.5 10.649 ± 0.006 12.817 ± 0.003 14.56 ± 0.02 15.46 ± 0.01 24.265 ± 0.008
0.6 9.36 ± 0.02 11.272 ± 0.007 12.795 ± 0.006 13.610 ± 0.007 21.510 ± 0.007
0.7 7.574 ± 0.004 9.128 ± 0.006 10.41 ± 0.01 11.06 ± 0.02 17.708 ± 0.008
0.8 5.313 ± 0.002 6.441 ± 0.006 7.360 ± 0.007 7.853 ± 0.002 12.675 ± 0.002
0.9 2.562 ± 0.001 3.127 ± 0.002 3.576 ± 0.002 3.827 ± 0.001 6.242 ± 0.002
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Table S7. T2,pore = 8 ms 
60

H 
Si

lic
a 

T2,pore =  
8 ms 

FF
0.25 0.30 0.35 0.40 0.62

a/b 
0.5 16.0 ± 0.1 17.1 ± 0.1 19.6 ± 0.1 19.15 ± 0.08 24.26 ± 0.02
0.6 13.2 ± 0.1 14.36 ± 0.04 16.2 ± 0.01 16.12 ± 0.05 21.15 ± 0.06
0.7 9.86 ± 0.06 10.75 ± 0.04 12.44 ± 0.07 12.25 ± 0.03 17.27 ± 0.02
0.8 6.15 ± 0.02 7.02 ± 0.03 8.06 ± 0.03 8.151 ± 0.009 12.14 ± 0.02
0.9 2.584 ± 0.005 3.050 ± 0.006 3.518 ± 0.007 3.654 ± 0.007 5.787 ± 0.002

RP
 S

ili
ca

 

T2,pore =  
8 ms 

FF
0.25 0.30 0.35 0.40 0.62

a/b 

0.5 9.47 ± 0.02 11.32 ± 0.01 12.91 ± 0.01 13.66 ± 0.01 21.289 ± 0.007
0.6 8.28 ± 0.02 9.91 ± 0.02 11.264 ± 0.009 11.97 ± 0.02 18.862 ± 0.008
0.7 6.69 ± 0.01 8.050 ± 0.009 9.17 ± 0.01 9.764 ± 0.005 15.526 ± 0.004
0.8 4.681 ± 0.003 5.664 ± 0.002 6.468 ± 0.005 6.890 ± 0.004 11.114 ± 0.004
0.9 2.245 ± 0.002 2.746 ± 0.001 3.138 ± 0.001 3.354 ± 0.001 5.467 ± 0.001

 
Table S8. T2,pore = 9 ms 

60
H 

Si
lic

a 

T2,pore =  
9 ms 

FF
0.25 0.30 0.35 0.40 0.62

a/b 

0.5 15.0 ± 0.2 15.9 ± 0.1 18.3 ± 0.1 18.00 ± 0.07 21.97 ± 0.04
0.6 12.2 ± 0.1 13.4 ± 0.1 15.0 ± 0.1 14.8 ± 0.1 19.18 ± 0.05
0.7 9.20 ± 0.05 9.99 ± 0.05 11.37 ± 0.09 11.31 ± 0.05 15.56 ± 0.03
0.8 5.65 ± 0.02 6.39 ± 0.02 7.40 ± 0.03 7.423 ± 0.009 10.90 ± 0.02
0.9 2.35 ± 0.01 2.753 ± 0.006 3.175 ± 0.005 3.296 ± 0.004 5.183 ± 0.006

RP
 S

ili
ca

 

T2,pore =  
9 ms 

FF
0.25 0.30 0.35 0.40 0.62

a/b 

0.5 8.54 ± 0.03 10.15 ± 0.01 11.62 ± 0.02 12.25 ± 0.02 18.97 ± 0.01
0.6 7.43 ± 0.01 8.89 ± 0.01 10.15 ± 0.01 10.733 ± 0.008 16.803 ± 0.007
0.7 5.98 ± 0.01 7.20 ± 0.01 8.20 ± 0.01 8.711 ± 0.005 13.822 ± 0.003
0.8 4.191 ± 0.003 5.052 ± 0.004 5.773 ± 0.004 6.147 ± 0.004 9.899 ± 0.004
0.9 2.002 ± 0.002 2.444 ± 0.001 2.795 ± 0.002 2.985 ± 0.001 4.866 ± 0.001

 
Table S9. T2,pore = 10 ms 

60
H 

Si
lic

a 

T2,pore =  
10 ms 

FF
0.25 0.30 0.35 0.40 0.62

a/b 

0.5 14.23 ± 0.07 15.3 ± 0.2 17.3 ± 0.1 16.8 ± 0.2 20.14 ± 0.05
0.6 11.52 ± 0.05 12.47 ± 0.06 14.37 ± 0.05 13.80 ± 0.06 17.49 ± 0.06
0.7 8.50 ± 0.08 9.22 ± 0.06 10.70 ± 0.08 10.49 ± 0.07 14.14 ± 0.02
0.8 5.29 ± 0.03 5.92 ± 0.03 6.86 ± 0.04 6.82 ± 0.03 9.93 ± 0.02
0.9 2.14 ± 0.01 2.510 ± 0.008 2.912 ± 0.004 2.993 ± 0.003 4.715 ± 0.006

RP
 S

ili
ca

 

T2,pore =  
10 ms 

FF
0.25 0.30 0.35 0.40 0.62

a/b 

0.5 7.82 ± 0.02 9.21 ± 0.02 10.52 ± 0.01 11.081 ± 0.007 17.13 ± 0.01
0.6 6.78 ± 0.01 8.09 ± 0.02 9.19 ± 0.01 9.73 ± 0.01 15.154 ± 0.003
0.7 5.431 ± 0.009 6.525 ± 0.006 7.444 ± 0.005 7.882 ± 0.008 12.470 ± 0.004
0.8 3.782 ± 0.006 4.574 ± 0.003 5.228 ± 0.005 5.559 ± 0.004 8.918 ± 0.001
0.9 1.809 ± 0.001 2.204 ± 0.002 2.526 ± 0.002 2.693 ± 0.001 4.385 ± 0.001



S12 

 

Table S10. Without T2,pore 
60

H 
Si

lic
a 

NO T2,pore 
FF

0.25 0.30 0.35 0.40 0.62
a/b 

0.5 7.3 ± 0.2 6.5 ± 0.3 7.6 ± 0.3 6.2 ± 0.2 3.41 ± 0.08
0.6 5.5 ± 0.3 4.9 ± 0.3 5.7 ± 0.3 4.7 ± 0.2 2.67 ± 0.08
0.7 3.5 ± 0.2 3.2 ± 0.2 3.6 ± 0.2 2.93 ± 0.08 1.95 ± 0.09
0.8 1.71 ± 0.05 1.6 ± 0.1 1.81 ± 0.04 1.49 ± 0.02 1.17 ± 0.07
0.9 0.39 ± 0.01 0.37 ± 0.02 0.43 ± 0.02 0.35 ± 0.02 0.37 ± 0.03

RP
 S

ili
ca

 

NO T2,pore 
FF

0.25 0.30 0.35 0.40 0.62

a/b 

0.5 1.08 ± 0.02 0.98 ± 0.01 1.04 ± 0.03 0.97 ± 0.02 0.45 ± 0.01
0.6 0.76 ± 0.01 0.67 ± 0.03 0.78 ± 0.04 0.64 ± 0.02 0.37 ± 0.01
0.7 0.480 ± 0.008 0.43 ± 0.01 0.49 ± 0.02 0.41 ± 0.02 0.269 ± 0.009
0.8 0.231 ± 0.004 0.212 ± 0.005 0.24 ± 0.01 0.20 ± 0.01 0.161 ± 0.005
0.9 0.054 ± 0.002 0.050 ± 0.001 0.056 ± 0.003 0.047 ± 0.002 0.052 ± 0.002

 

7. Magnetic field gradient distributions 

 
Figure S6. Reduced magnetic field gradient distributions8 for silica spheres with unitary external radius b arranged 
according to the lattice with FF = 0.35. a full spheres. b hollow spheres with a/b = 0.8. 
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