Supporting Information for:

Low Ca2+ concentration doping enhances the mechanical properties and ionic conductivity of Na3PS4 superionic conductors based on first-principles

Bowen Huang,^a Junbo Zhang,^b Yutao Shi,^b Xiaodong Lu,^b Jingjing Zhang,^b Bingbing Chen,^{b,*} Jianqiu Zhou^{a, b, *} and Rui Cai^c.

^a Department of Mechanical and Power Engineering, Nanjing Tech University, Nanjing, 210009, Jiangsu Province, China

^b Department of Energy Science and Engineering, Nanjing Tech University, Nanjing,
210000, Jiangsu Province, China

^c State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, Jiangsu Province, China

*Corresponding author

Elastic parameters calculation methods

Based on the first-principles calculation of density function theory (DFT), the polymorphic modulus can be approximated by Voigt method and Reuss method. The approximate relationship between G_V , G_R , B_V and B_R is obtained according to Voigt and Reuss:

$$G_{V} = \frac{1}{15} \Big[\Big(C_{11} + C_{22} + C_{33} - C_{12} - C_{13} - C_{23} \Big) + 3 \Big(C_{44} + C_{55} + C_{66} \Big) \Big]$$

$$G_{R} = 15 \Big[\frac{1}{4 \Big(S_{11} + S_{22} + S_{33} \Big) - 4 \Big(S_{12} + S_{13} + S_{23} \Big) + 3 \Big(S_{44} + S_{55} + S_{66} \Big) \Big]}$$

$$B_{V} = \frac{\Big(C_{11} + C_{22} + C_{33} \Big) + 2 \Big(C_{12} + C_{13} + C_{23} \Big)}{9}$$

$$B_{R} = \frac{1}{\Big(S_{11} + S_{22} + S_{33} \Big) + 2 \Big(S_{12} + S_{13} + S_{23} \Big)}$$
(1)

Where C_{ij} and S_{ij} represent the elastic stiffness constant and the elastic compliance constant, respectively, collectively referred to as the elastic constant, which determines the stiffness of the crystal against external strain. According to the theory of elasticity, a 6×6 symmetric matrix is needed to describe the relationship between stress and strain. Both the c-phase and the t-phase of Na₃PS₄ have symmetry, Therefore , the independent constants of the two phases are reduced to nine: C₁₁, C₂₂, C₃₃, C₄₄, C₅₅, C₆₆, C₁₂, C₁₃, C₂₃ respectively.

The calculation relation of shear modulus (G) and bulk modulus (B) is derived by Voigt-Reuss-Hill (VRH) averaging method, as follows:

$$G = \frac{G_R + G_V}{2}$$

$$B = \frac{B_R + B_V}{2}$$
(2)

Where G_V and G_R are the shear moduli of Voigt and Reuss, respectively, and B_V and B_R are the bulk moduli of Voigt and Reuss, respectively.

Young's modulus (E) and Poisson's ratio (v) can be calculated by the following equation.

$$E = \frac{9BG}{3B+G}$$

$$\upsilon = \frac{3B-2G}{6B+2G}$$
(3)

Criteria for evaluating the stability of elastic constants.

$$C_{ij}(i = j) > 0$$

$$C_{11} + C_{22} - 2C_{12} > 0$$

$$C_{11} + C_{33} - 2C_{13} > 0$$

$$C_{22} + C_{33} - 2C_{23} > 0$$

$$C_{11} + C_{22} + C_{33} + 2C_{12} + 2C_{13} + 2C_{23} > 0$$
(4)

Figure S1. The band gap structure of cubic Na_3PS_4 . (a) The band gap structure of Na_3PS_4 . (b) The band gap structure of $Ca_{0.125}Na_{2.75}PS_4$. (c) The band gap structure of $Ca_{0.25}Na_{2.5}PS_4$. (d) The band gap structure of $Ca_{0.375}Na_{2.25}PS_4$.

Figure S2. The band gap structure of tetragonal Na_3PS_4 . (a) The band gap structure of Na_3PS_4 . (b) The band gap structure of $Ca_{0.125}Na_{2.75}PS_4$. (c) The band gap structure of $Ca_{0.25}Na_{2.5}PS_4$. (d) The band gap structure of $Ca_{0.375}Na_{2.25}PS_4$.

Figure S3. Projected DOS of cubic and tetragonal Na₃PS₄. (a) Projected DOS of c-Ca_{0.25}Na_{2.5}PS₄. (b) Projected DOS of c-Ca_{0.375}Na_{2.25}PS₄. (c) Projected DOS of t-Ca_{0.125}Na_{2.75}PS₄. (d) Projected DOS of t-Ca_{0.375}Na_{2.25}PS₄.

Composition	Ca ²⁺ doped site	Na vacancy site	Formation energy(eV)
c-Ca _{0.125} Na _{2.75} PS ₄	Na I	Na I	0.348
	Na I	Na II	0.627
	Na II	Na I	0.248
	Na II	Na II	0.347
c- Ca _{0.25} Na _{2.5} PS ₄	Na I, Na I	Na I, Na I	0.758
	Na I, Na I	Na I, Na II	0.782
	Na I, Na I	Na II, Na II	0.792
	Na II, Na II	Na I, Na I	0.357
	Na II, Na II	Na I, Na II	0.377
	Na II, Na II	Na II, Na II	0.387
	Na I, Na II	Na I, Na I	0.397
	Na I, Na II	Na I, Na II	0.476
	Na I, Na II	Na II, Na II	0.672
t- Ca _{0.125} Na _{2.75} PS ₄	Na I	Na I	0.654
	Na I	Na II	0.778
	Na II	Na I	0.387
	Na II	Na II	0.397
t- Ca _{0.25} Na _{2.5} PS ₄	Na I, Na I	Na I, Na I	0.732
	Na I, Na I	Na I, Na II	0.879
	Na I, Na I	Na II, Na II	0.891
	Na II, Na II	Na I, Na I	0.264
	Na II, Na II	Na I, Na II	0.293
	Na II, Na II	Na II, Na II	0.323
	Na I, Na II	Na I, Na I	0.387
	Na I, Na II	Na I, Na II	0.642
	Na I, Na II	Na II, Na II	0.666

Table S1. Calculation of formation energies of Ca and Na vacancies with different concentrations at different sites.

Composition	Ca ²⁺ doped site	Na vacancy site	Formation energy(eV)
c- Ca _{0.375} Na _{2.25} PS ₄	Na I, Na I, Na I	Na I, Na I, Na I	0.733
	Na I, Na I, Na I	Na II, Na I, Na I	0.759
	Na I, Na I, Na I	Na I, Na II, Na II	0.810
	Na I, Na I, Na I	Na II, Na II, Na II	0.822
	Na II, Na II, Na II	Na I, Na I, Na I	0.472
	Na II, Na II, Na II	Na II, Na I, Na I	0.493
	Na II, Na II, Na II	Na I, Na II, Na II	0.511
	Na II, Na II, Na II	Na II, Na II, Na II	0.558
	Na II, Na I, Na I	Na I, Na I, Na I	0.673
	Na II, Na I, Na I	Na II, Na I, Na I	0.682
	Na II, Na I, Na I	Na I, Na II, Na II	0.693
	Na II, Na I, Na I	Na II, Na II, Na II	0.697
	Na II, Na II, Na I	Na I, Na I, Na I	0.654
	Na II, Na II, Na I	Na II, Na I, Na I	0.655
	Na II, Na II, Na I	Na I, Na II, Na II	0.660
	Na II, Na II, Na I	Na II, Na II, Na II	0.662
t- Ca _{0.375} Na _{2.25} PS ₄	Na I, Na I, Na I	Na I, Na I, Na I	0.765
	Na I, Na I, Na I	Na II, Na I, Na I	0.782
	Na I, Na I, Na I	Na I, Na II, Na II	0.810
	Na I, Na I, Na I	Na II, Na II, Na II	0.812
	Na II, Na II, Na II	Na I, Na I, Na I	0.487
	Na II, Na II, Na II	Na II, Na I, Na I	0.529
	Na II, Na II, Na II	Na I, Na II, Na II	0.551
	Na II, Na II, Na II	Na II, Na II, Na II	0.573
	Na I, Na I, Na II	Na I, Na I, Na I	0.724
	Na I, Na I, Na II	Na II, Na I, Na I	0.734
	Na I, Na I, Na II	Na I, Na II, Na II	0.740
	Na I, Na I, Na II	Na II, Na II, Na II	0.749
	Na I, Na II, Na II	Na I, Na I, Na I	0.646
	Na I, Na II, Na II	Na II, Na I, Na I	0.654
	Na I, Na II, Na II	Na I, Na II, Na II	0.665
	Na I, Na II, Na II	Na II, Na II, Na II	0.685

Table S2. Calculation of formation energies of Ca and Na vacancies with different concentrations at different sites.

Composition	Ca ²⁺ doped site	Na vacancy site	Formation energy(eV)
c-Ca _{0.5} Na ₂ PS ₄	Na I, Na I, Na I, Na I	Na I, Na I, Na I, Na I	1.054
	Na I, Na I, Na I, Na I	Na II, Na I, Na I, Na I	1.067
	Na I, Na I, Na I, Na I	Na II, Na II, Na I, Na I	1,076
	Na I, Na I, Na I, Na I	Na II, Na II, Na II, Na I	1.147
	Na I, Na I, Na I, Na I	Na II, Na II, Na II, Na II	1.197
	Na II, Na II, Na II, Na II	Na I, Na I, Na I, Na I	0.546
	Na II, Na II, Na II, Na II	Na II, Na I, Na I, Na I	0.547
	Na II, Na II, Na II, Na II	Na II, Na II, Na I, Na I	0.554
	Na II, Na II, Na II, Na II	Na II, Na II, Na II, Na I	0.555
	Na II, Na II, Na II, Na II	Na II, Na II, Na II, Na II	0.556
	Na II, Na I, Na I, Na I	Na I, Na I, Na I, Na I	0.682
	Na II, Na I, Na I, Na I	Na II, Na I, Na I, Na I	0.687
	Na II, Na I, Na I, Na I	Na II, Na II, Na I, Na I	0.693
	Na II, Na I, Na I, Na I	Na II, Na II, Na II, Na I	0.888
	Na II, Na I, Na I, Na I	Na II, Na II, Na II, Na II	0.992
	Na II, Na II, Na I, Na I	Na I, Na I, Na I, Na I	0.613
	Na II, Na II, Na I, Na I	Na II, Na I, Na I, Na I	0.662
	Na II, Na II, Na I, Na I	Na II, Na II, Na I, Na I	0.667
	Na II, Na II, Na I, Na I	Na II, Na II, Na II, Na I	0.672
	Na II, Na II, Na I, Na I	Na II, Na II, Na II, Na II	0.677
	Na II, Na II, Na II, Na I	Na I, Na I, Na I, Na I	0.596
	Na II, Na II, Na II, Na I	Na II, Na I, Na I, Na I	0.597
	Na II, Na II, Na II, Na I	Na II, Na II, Na I, Na I	0.598
	Na II, Na II, Na II, Na I	Na II, Na II, Na II, Na I	0.609
	Na II, Na II, Na II, Na I	Na II, Na II, Na II, Na II	0.610

Table S3. Calculation of formation energies of Ca and Na vacancies with different concentrations at different sites.

Composition	Ca ²⁺ doped site	Na vacancy site	Formation energy(eV)
t- c-Ca $_{0.5}$ Na $_2$ PS $_4$	Na I, Na I, Na I, Na I	Na I, Na I, Na I, Na I	0.948
	Na I, Na I, Na I, Na I	Na II, Na I, Na I, Na I	0.959
	Na I, Na I, Na I, Na I	Na II, Na II, Na I, Na I	0.968
	Na I, Na I, Na I, Na I	Na II, Na II, Na II, Na I	1.031
	Na I, Na I, Na I, Na I	Na II, Na II, Na II, Na II	1.077
	Na II, Na II, Na II, Na II	Na I, Na I, Na I, Na I	0.492
	Na II, Na II, Na II, Na II	Na II, Na I, Na I, Na I	0.494
	Na II, Na II, Na II, Na II	Na II, Na II, Na I, Na I	0.498
	Na II, Na II, Na II, Na II	Na II, Na II, Na II, Na I	0.499
	Na II, Na II, Na II, Na II	Na II, Na II, Na II, Na II	0.537
	Na II, Na I, Na I, Na I	Na I, Na I, Na I, Na I	0.618
	Na II, Na I, Na I, Na I	Na II, Na I, Na I, Na I	0.623
	Na II, Na I, Na I, Na I	Na II, Na II, Na I, Na I	0.799
	Na II, Na I, Na I, Na I	Na II, Na II, Na II, Na I	0.892
	Na II, Na I, Na I, Na I	Na II, Na II, Na II, Na II	0.893
	Na II, Na II, Na I, Na I	Na I, Na I, Na I, Na I	0.595
	Na II, Na II, Na I, Na I	Na II, Na I, Na I, Na I	0.599
	Na II, Na II, Na I, Na I	Na II, Na II, Na I, Na I	0.604
	Na II, Na II, Na I, Na I	Na II, Na II, Na II, Na I	0.609
	Na II, Na II, Na I, Na I	Na II, Na II, Na II, Na II	0.613
	Na II, Na II, Na II, Na I	Na I, Na I, Na I, Na I	0.537
	Na II, Na II, Na II, Na I	Na II, Na I, Na I, Na I	0.538
	Na II, Na II, Na II, Na I	Na II, Na II, Na I, Na I	0.548
	Na II, Na II, Na II, Na I	Na II, Na II, Na II, Na I	0.549
	Na II, Na II, Na II, Na I	Na II, Na II, Na II, Na II	0.551

Table S4. Calculation of formation energies of Ca and Na vacancies with different concentrations at different sites.

Composition	B/G
c-Na ₃ PS ₄	1.25
$c-Ca_{0.125}Na_{2.75}PS_4$	1.56
c-Ca _{0.25} Na _{2.5} PS ₄	1.39
$c-Ca_{0.375}Na_{2.25}PS_4$	1.32
c-Ca _{0.5} Na ₂ PS ₄	1.27
t-Na ₃ PS ₄	1.44
$t-Ca_{0.125}Na_{2.75}PS_4$	1.23
$t-Ca_{0.25}Na_{2.5}PS_4$	1.51
$t-Ca_{0.375}Na_{2.25}PS_4$	1.40
$t-Ca_{0.5}Na_2PS_4$	1.35

Table S5. Calculation of B/G values of pure phase and doped phase with different concentration of Ca^{2+} based on first-principles.