Electronic Supplementary Information for: "Influence of the N atom and its position on electron photodetachment of deprotonated indole and azaindole"

Jennifer A. Noble^{1*}, Ernesto Marceca², Claude Dedonder¹ and Christophe Jouvet¹

1 CNRS, Aix Marseille Univ., PIIM, Physique des Interactions Ioniques et Moléculaires, UMR 7345, 13397, Marseille, France. jennifer.noble@univ-amu.fr

2 INQUIMAE (CONICET – Universidad de Buenos Aires), DQIAQF (Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires), Ciudad Universitaria, 3er piso, Pab. II, 1428 Buenos Aires, Argentina

Figure SI-1: Comparison between the experimental spectrum of indolide (black trace) and the calculated excited states at the CAM-B3LYP/aug-cc-pVDZ level (blue curve). Twenty-two calculated electronic states are involved within the spectral region plotted in the figure, starting in the lowest energy state at 2.9 eV and terminating in the main band at 5.22 eV – corresponding to the 19th excited state. The curve representing the calculated states results from the convolution with a Lorentzian curve, with a width of 0.1 eV, making use of gabedit software⁵⁵

[6-AI-H] [–] anion vibrations			
1	226	a"	
2	247	a"	
3	411	a'	
4	440	a"	
5	573	a'	
6	626	a'	
7	629	a''	
8	661	a''	
9	684	a''	
10	801	a'	
11	805	a"	
12	815	a"	
13	897	a"	
14	900	a'	
15	918	a'	
16	937	a"	
17	961	a"	
18	1051	a'	
19	1055	a'	
20	1189	a'	
21	1199	a'	
22	1248	a'	
23	1299	a'	
24	1313	a'	
25	1374	a'	
26	1409	a'	
27	1459	a'	
28	1485	a'	
29	1502	a'	
30	1598	a'	
31	1650	a'	
32	3138	a'	
33	3141	a'	
34	3166	a'	
35	3168	a'	
36	3224	a'	

[6-AI-H] [•] radical vibrations		
1	208.17	a"
2	241.42	a"
3	395.81	a''
4	404.28	a'
5	540.7	a''
6	558.91	a'
7	587.63	a'
8	614.03	a''
9	742.93	a''
10	792.36	a"
11	792.38	a'
12	850.02	a"
13	858.63	a'
14	914.18	a'
15	925.28	a"
16	955.83	a'
17	965.62	a''
18	1003	a''
19	1047.4	a'
20	1146.03	a'
21	1180.87	a'
22	1185.46	a'
23	1224.5699	a'
24	1319.4399	a'
25	1350.17	a'
26	1367.29	a'
27	1451.27	a'
28	1466.27	a'
29	1500.58	a'
30	1651.71	a'
31	1666.89	a'
32	3186.1299	a'
33	3208.8	a'
34	3218.8799	a'
35	3232.5801	a'
36	3257.6001	a'

[7-AI-H] [–] anion vibrations		
1	230	a"
2	257	a''
3	447	a"
4	453	a'
5	567	a'
6	624	a"
7	631	a'
8	639	a"
9	677	a"
10	764	a"
11	781	a'
12	832	a"
13	900	a'
14	900	a"
15	912	a'
16	920	a"
17	949	a"
18	1057	a'
19	1061	a'
20	1118	a'
21	1191	a'
22	1237	a'
23	1284	a'
24	1359	a'
25	1361	a'
26	1402	a'
27	1438	a'
28	1477	a'
29	1524	a'
30	1596	a'
31	1650	a'
32	3122	a'
33	3148	a'
34	3168	a'
35	3185	a'
36	3222	a'

[7-AI-H] [•] radical vibrations		
1	218	a"
2	232	a"
3	429	a"
4	445	a'
5	522	a"
6	554	a'
7	586	a"
8	618	a'
9	734	a"
10	774	a'
11	804	a"
12	823	a"
13	866	a'
14	905	a'
15	934	a"
16	965	a"
17	972	a'
18	1003	a"
19	1074	a'
20	1116	a'
21	1193	a'
22	1227	a'
23	1251	a'
24	1287	a'
25	1345	a'
26	1369	a'
27	1427	a'
28	1518	a'
29	1530	a'
30	1636	a'
31	1652	a'
32	3195	a'
33	3208	a'
34	3223	a'
35	3232	a'
36	3253	a'