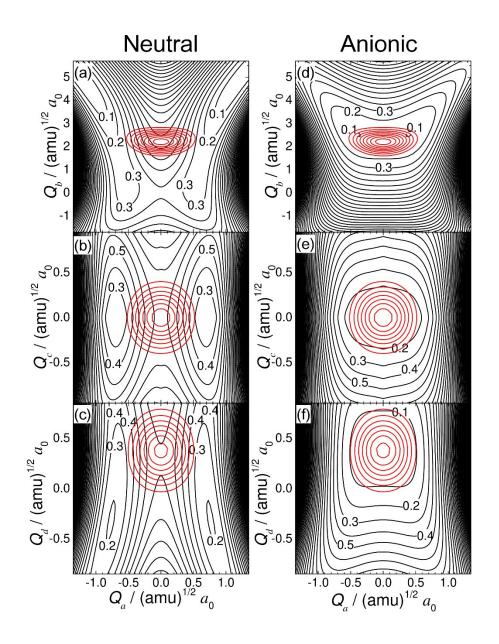

Electronic Supplementary Information

Franck–Condon simulations of transition state spectra for the $OH + H_2O$ and $OD + D_2O$ reactions

Yutaro Sugiura and Toshiyuki Takayanagi*

Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan

Schematic reaction coordinate


Figure S1

Schematic energy diagram of the neutral H_3O_2 rection system. Energies at stationary points are obtained from the *ab initio*-level PIP-NN potential energy surface employed in the present study.

Figure S2

Normal-mode coordinates used in the quantum dynamics calculations as active nuclear degrees of freedom, obtained from vibrational frequency analysis of the C_2 transition-state structure for the OD + D₂O \rightarrow D₂O + OD reaction. Mode 1 corresponds to the vibrational mode with an imaginary frequency.

Figure S3

Two-dimensional contour plots of the potential energy surfaces of D_3O_2 and $D_3O_2^-$. The contour increment was set to 0.1 eV. Left and right panels show the neutral and anionic potential energy surfaces, respectively. Panels (a) and (d) depict the surfaces plotted as a function of Q_a and Q_b . Panels (b) and (e) depict the surfaces plotted as a function of Q_a and Q_c . Panels (c) and (f) depict the surfaces plotted as a function of Q_a and Q_d . The superimposed red contour lines indicate the projection of the initial anion wavefunction density in the ground vibrational state.

Figure S4

Left panels: vibrational wavefunction densities of the $D_3O_2^-$ anion plotted as a function of Q_a and Q_b coordinates. The state can be described by a set of quantum numbers (v_a , v_b , v_c , v_d), where v_a , v_b , v_c , and v_d are the vibrational quantum numbers for the Q_a , Q_b , Q_c , and Q_d coordinates, respectively. Right panels: photodetachment spectrum calculated using each vibrational wavefunction as an initial wave packet. The calculated spectra are plotted as a function of the energy defined by the neutral potential energy surface.