SUPPLEMENTARY INFORMATION

The Phenoxyl Group-Modulated Interplay of Cation– π and σ -type Interactions in the Alkali Metal Series

Giacomo Prampolini,^{*a*,*}, Marco D'Ischia,^{*b*} and Alessandro Ferretti,^{*a*,*}

 ^aIstituto di Chimica dei Composti OrganoMetallici (ICCOM-CNR), Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
^bDipartimento di Scienze Chimiche, Universitá di Napoli Federico II, I-80126 Napoli, Italy

October 29, 2020

Contents

1	1D curves	3
2	Torsional energy profiles	10
3	Interaction energy landscapes: δ dependence	11

1 1D curves

Figure S1: **R** displacement vector (red dashed arrows) of the M⁺ metal ion with respect to the considered aromatic ring in different geometrical arrangements: a) \mathbf{R}_{top} , along the (z) direction perpendicular to the aromatic ring plane (xy) of either benzene, phenol or catechol; b) \mathbf{R}_{side} , along the (x) direction within the xy plane and bisecting the C=C bond of the Carbon bearing the oxygen in phenol; c) \mathbf{R}_{O} , along the vector connecting the ring center with the Oxygen in phenol; d) \mathbf{R}_{side} , along the (x) direction within the xy plane and bisecting the carbon bearing the oxygen in catechol, with in the H-bonded (δ =180°) conformation; e) same as d) but in the δ =0° conformation, without the internal HB; f) c) \mathbf{R}_{O} , along the vector connecting the ring center with one of the Oxygens in catechol;

Figure S2: CCSD(T)/def2-TZVPPD (squares) and MP2^{mod} (lines) interaction energy profiles ($\Delta E(R)$) between Na⁺ (red), K⁺ (green), Rb⁺ (magenta) and Cs⁺ (brown) cations and phenol. Left panel: metal ion approaching along R_{side} (solid lines) or R₀ (dashed lines). Right panel: metal ion approaching along R_{side} with phenol in either the δ = 180° (solid lines) or δ =0° (dashed lines) conformation.

Figure S3: CCSD(T)/def2-TZVPPD (squares) and MP2^{mod} (lines) interaction energy profiles ($\Delta E(R)$) between Na⁺ (red), K⁺ (green), Rb⁺ (magenta) and Cs⁺ (brown) cations and catechol. Left panel: metal ion approaching along R_{side} (solid lines) or R₀ (dashed lines). Right panel: metal ion approaching along R_{side} with with catechol in either the δ = 180° (solid lines) or δ =0° (dashed lines) conformation.

Figure S4: CCSD(T)/def2-TZVPPD (squares) and MP2^{mod} (lines) interaction energy profiles ($\Delta E(R)$) between Na⁺ (red), K⁺ (green), Rb⁺ (magenta) and Cs⁺ (brown) cations and phenol. On the left side, as shown in the inset, metal ion approaching along R_{top} (dashed lines), whereas on the right the cation is displaced along R_{side} (solid lines).

Figure S5: CCSD(T)/def2-TZVPPD (squares) and MP2^{mod} (lines) interaction energy profiles ($\Delta E(R)$) between Na⁺ (red), K⁺ (green), Rb⁺ (magenta) and Cs⁺ (brown) cations and catechol. On the left side, as shown in the inset, metal ion approaching along R_{top} (dashed lines), whereas on the right the cation is displaced along R_{side} (solid lines).

M^+	Interaction	R (Å)	$R_{O-M^+}(\text{\AA})$	$\Delta E (kJ/mol)$
Na ⁺	cation $-\pi$	1.90	3.35	-44.1
Na ⁺	cation– π	2.45	3.69	-104.6
Na ⁺	cation– π	3.20	4.22	-73.9
Na ⁺	σ -type	4.00	2.07	-67.9
Na ⁺	σ -type	4.30	2.30	-83.6
Na ⁺	σ -type	5.00	2.90	-62.9
K ⁺	cation $-\pi$	2.40	3.65	-40.8
\mathbf{K}^+	cation $-\pi$	2.90	4.00	-76.0
\mathbf{K}^+	cation $-\pi$	4.20	5.03	-37.0
\mathbf{K}^+	σ -type	4.40	2.39	-50.1
\mathbf{K}^+	σ -type	4.70	2.64	-61.0
\mathbf{K}^+	σ -type	5.30	3.17	-51.2
Rb ⁺	cation $-\pi$	2.60	3.79	-36.2
Rb^+	cation $-\pi$	3.05	4.11	-67.9
Rb^+	cation $-\pi$	3.80	4.70	-48.5
Rb^+	σ -type	4.50	2.47	-35.8
Rb^+	σ -type	4.90	2.82	-58.2
Rb^+	σ -type	5.60	3.45	-44.2
Cs ⁺	cation $-\pi$	2.80	3.93	-36.2
Cs^+	cation $-\pi$	3.20	4.23	-67.9
Cs^+	cation $-\pi$	4.20	5.03	-48.5
Cs^+	σ -type	4.70	2.64	-34.4
Cs^+	σ -type	5.10	2.99	-58.3
Cs^+	σ -type	5.80	3.64	-39.7

Table A: Inter-molecular distance (R) between the metal ion and the ring center, distance between the metal ion and the neighbouring oxygen atoms (R_{O-M^+}) and $MP2^{mod}$ interaction energy (ΔE) computed for phenol····M⁺ complexes in cation– π or σ -type selected arrangements.

M^+	Interaction	R (Å)	$R_{O-M^+}(\text{\AA})$	$\Delta E (kJ/mol)$
Na ⁺	cation $-\pi$	2.50	3.73	-104.3
Na ⁺	σ -type	4.30	2.26	-165.6
K ⁺	cation $-\pi$	2.80	3.94	-78.4
\mathbf{K}^+	σ -type	4.60	2.51	-116.5

Table B: Inter-molecular distance (R) between the metal ion and the ring center, distance between the metal ion and the neighbouring oxygen atoms (R_{O-M^+}) and $MP2^{mod}$ interaction energy (ΔE) computed for catechol····M⁺ complexes in selected cation– π or σ -type arrangements.

2 Torsional energy profiles

For phenol and catechol molecules, a relaxed internal energy scan was performed as a function of the δ dihedral shown in Figure S1, by optimizing all degrees of freedom at MP2^{mod} level, but the scanned torsional angle. The resulting curves are collected in Figure S6, together with a pictorial representation of the effect of the -OH rotation on the intramolecular HB.

Figure S6: MP2^{mod} relaxed torsional energy (ΔE^{tors}) scan as a function of the δ dihedral around the C-OH bond in phenol (blue line) and catechol (red line). The effect of δ rotation on the intramolecular HB is shown in the top inset.

3 Interaction energy landscapes: δ dependence

Figure S7: 2D interaction energy plots $\Delta E(\rho, \delta)$ computed at MP2^{mod} level between phenol (top) or catechol (bottom) and Rb⁺(left) or Cs⁺(right) cations. The sampled PES region is shown in the insets together with the investigated dihedral. In the color palette, interaction energy is reported in kJ/mol.

Figure S8: 2D interaction energy plots $\Delta E(\phi, \delta)$ computed at MP2^{mod} level between phenol (top) or catechol (bottom) and Rb⁺(left) or Cs⁺(right) cations. The sampled PES region is shown in the insets together with the investigated dihedral. In the color palette, interaction energy is reported in kJ/mol.

Figure S9: 2D interaction energy plots $\Delta E(\theta, \delta)$ computed at MP2^{mod} level between phenol (top) or catechol (bottom) and Rb⁺(left) or Cs⁺(right) cations. The sampled PES region is shown in the insets together with the investigated dihedral. In the color palette, interaction energy is reported in kJ/mol.