Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2020

Supporting Information

Gate-Tunable High Magnetoresistance in Monolayer Fe₃GeTe₂ Spin Valves

Jie Yang,^{1,2} Ruge Quhe, ⁵ Shiqi Liu, ^{1,2} Yuxuan Peng,^{1,2} Xiaotian Sun,⁶ Liang Zha,^{1,2} Baochun Wu,^{1,2} Bowen Shi, ^{1,2} Chen Yang,^{1,2} Junjie Shi,^{1,2} Guang Tian,^{1,2} Changsheng Wang, ^{1,2} Jing Lu^{1, 3, 4*} and Jinbo Yang^{1, 3,4*}

¹ State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871, P. R. China

²Institute of Condensed Matter and Materials Physics, School of Physics, Peking University, Beijing 100871, P. R. China

 ³ Collaborative Innovation Center of Quantum Matter, Beijing 100871, P. R. China
 ⁴ Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MEMD), Peking University, Beijing 100871, P. R. China

⁵ State Key Laboratory of Information Photonics and Optical Communications and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, P. R. China ⁶ College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-

Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China Email: jinglu@pku.edu.cn, jbyang@pku.edu.cn

<i>d</i> (nm)	L _g (nm)	$G_{\rm P}\left({\rm e}^{2/{\rm h}} ight)$	$G_{AP}(e^2/h)$	MR (%)
0.11	1	3.59	0.60	495
	2	3.35	0.71	374
	3	3.35	0.57	485
1	1	3.32	0.71	369
	2	3.37	0.69	390
	3	3.24	0.59	447

Table S1. Monolayer Fe_3GeTe_2 spin valve performance with different split gate length and different gate spacing.

d is the distance between two split gates. L_g is the gate length of the split gate. G_P and G_{AP} are the conductance of the Fermi level in the parallel and antiparallel solutions.

Table S2. Magnetic moments of strain-induced ML Fe₃GeTe₂ with different methods (*m*, in $\mu_{\rm B}$).

	$m^{\text{GGA}+\text{U}}$	m ^{GGA}	m ^{LDA}
-2%	2.663	1.748	1.449
-1.5%	2.678	1.842	1.432
-1%	2.687	1.854	1.525
-0.5%	2.702	1.869	1.561
0%	2.756	1.974	1.580
			1.484 ^a , 1.424 ^b , 1.625 ^c
+0.5%	2.742	1.976	1.623
+1%	2.765	1.998	1.682
+1.5%	2.794	2.013	1.738
+2%	2.818	2.026	1.792

^{a, b} Previous calculation results of the averaged magnetic moment of the ML Fe₃GeTe₂. ^{1, 2} ^c Experimental results of the magnetic moment of the bulk Fe₃GeTe₂. ³

Figure S1. Magnetoresistance comparison of ML Fe_3GeTe_2 spin valve calculated with and without Hubbard *U*.

Zero equipotential lines are symmetrically distributed above and beneath the central region of the monolayer Fe_3GeTe_2 spin valve without gate. Noticeably, when adding the split gates, zero equipotential lines nearby the gates become flat and are different from the one without the gate. This different potential distribution caused by the existing gate makes the calculated MR vary though the boundary condition stays the same.

Figure S2. Hartree difference potential and equipotential lines before and after introducing spilt gate. The white lines represent the equipotential lines, given in eV.

Once both G_P and G_{AP} (or I_P and I_{AP}) increase, how the MR changes is unsure because the MR will become either higher or lower. The MR strongly depends on the changing rate of G_P and G_{AP} (I_P and I_{AP}). To summarize the gate effects on the MR, we plot the MR versus $\frac{a}{b}$, the ratio of the change rate of I_P and I_{AP} , in the Figure 8. The relation between $\frac{a}{b}$ and the MR in the

top and bottom gate effected and split gates effected cases can be well fitted by MR= 544.63 $\times \overline{b}$

a = 100 and MR= 594.37× \overline{b} -100, respectively. The slope of the linear functions is $\overline{I_{ap}}$. The greater slope is, the larger conductance difference between two solutions. The greater slope appears in the split gates effected case, which is another fact that assures using split gate configuration can more efficiently boost the device MR.

Figure S3. Magnetoresistance versus the ratio of the change rate of I_P and I_{AP} in the ML spin valve with top and bottom gates and split gates. The growth rates of I_P and I_{AP} are *a* and *b*, respectively.

Stress effects, caused by lattice mismatch or deposition in the experiment, turn out inevitable and are known to have influences on magnetic properties. ^{4, 5} The homogeneous biaxial tensile and compressive forces along x and y directions ranging from -2% to +2% are applied to the ML Fe₃GeTe₂. The stability is evaluated by the cohesive energy difference between the strained and unstrained ML Fe₃GeTe₂ ($\delta E = E_{\text{strain}} - E_{\text{unstrained}}$). The strain makes the ML Fe₃GeTe₂ less stable because δE is greater than zero (Figure S3 (a)). The ML Fe₃GeTe₂ with tensile forces within +2% is more stable than the composed ones. Besides, the strain changes the magnetic moment (*m*) of the ML Fe₃GeTe₂. *m* of the unstrained ML Fe₃GeTe₂ is calculated as 2.756 μ_B . *m* becomes 2.663~2.818 μ_B as the strain is induced ($\varepsilon_{xy} = -2\% \sim +2\%$). The compressive (tensile) force reduces (increases) *m* in comparison to the unstrained counterpart. We also compare the change of *m* with the local density approximation (LDA) functional alone because in this method the obtained *m* = 1.580 μ_B is in agreement with the experimental result (1.625 μ_B for bulk Fe₃GeTe₂) and the previous theoretical prediction (1.484 μ_B ¹ and 1.424 μ_B ² for the ML Fe₃GeTe₂). After inducing the same range strain, *m* becomes $1.432 \sim 1.792 \mu_{\rm B}$ at LDA level, the same declining (increasing) tendency with the calculations at the GGA+*U* level after inducing compressive (tensile) forces. All the calculations confirm the strain effects on *m*.

The detailed MR performance of the ML Fe₃GeTe₂ spin valve with mechanical stretch is also predicted. The ε_{xy} = +0.5% stretched case is chosen. As Figure S3(b) shows, at small bias (0 < $V_{\rm b} \leq 0.2$ V), the MR increases under the strain effects. The maximum value reaches ~362% when $V_{\rm b} = 0.2$ V, basically equal to the unstrained maximum value (~392%). As $V_{\rm b}$ continuously increases, the MR begins to decrease. The SFE is also taken into account, as shown in Figure S3 (c). The SFE of the stretched configuration ascends with the increasing $V_{\rm b}$ for both the P and AP solutions. Compared with the unstrained device, the SFE of the stretched device in the P solution is greater under the same bias. The largest SFE of the stretched device in the P solution is over 40%, much higher than the unstrained maximum value (\sim 10%). The SFE of the AP solution is also greater than that of the unstrained counterpart. The maximum SFE of the stretched device in the AP solution is over 50% when $V_{\rm b} = 0.4$ V, higher than the peak value of the unstrained case (~40%). The stretching intensifies the ability to produce current polarization of the ML Fe₃GeTe₂ spin valve because the greater α spin DOS of the stretched ML Fe₃GeTe₂ nearby the Fermi level (Figure S3) can drive more α spin electrons to get through under bias. With a stable level of the MR and a higher ability of the SFE, it is worth to expect that the ML Fe₃GeTe₂ with tensile force might open a route for manufacturing flexible spin-resolved devices.

Figure S4. (a) Cohesive energy difference (δE) between strained and unstrained ML Fe₃GeTe₂ with $\varepsilon_{xy} = -2\% \sim +2\%$. Black arrows in inset are the strain force directions. (b) Bias dependence of the magnetoresistance and (c) Comparison of the spin-filter efficiency of unstrained and

strained ML Fe₃GeTe₂ spin valve.

Figure S5. Spin-resolved band structure and density of states of ε_{xy} = +0.5% ML Fe₃GeTe₂.

Figure S6. Spin-resolved density of states of monolayer, bilayer and bulk Fe₃GeTe₂. Fermi level is set to zero.

References

- Y. Deng, Y. Yu, Y. Song, J. Zhang, N. Z. Wang, Z. Sun, Y. Yi, Y. Z. Wu, S. Wu, J. Zhu, J. Wang, X. H. Chen and Y. Zhang, *Nature*, 2018, 563, 94-99.
- 2. H. L. Zhuang, P. R. C. Kent and R. G. Hennig, *Phys. Rev. B*, 2016, **93**, 134407.
- S. Das, H.-Y. Chen, A. V. Penumatcha and J. Appenzeller, *Nano. Lett.*, 2013, 13, 100-105.
- 4. S.-M. Choi, S.-H. Jhi and Y.-W. Son, *Nano Lett.*, 2010, **10**, 3486-3489.
- 5. T. Hu and J. Dong, *Phys. Rev. B*, 2015, **92**, 064114.