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1. Formulation of the Poisson-Boltzmann equation  

 

The Poisson equation governing the electric potential distribution where there appears 

a space charge has the following form [1]  

( ) e    = −           (S1) 

where   is the electric permittivity, e  electric charge density, and   is the electric potential.  

The net charge density  consists of the space (immobile) charge density ef due to the 

dissociation of ionogenic groups and the mobile charge density em  due to the presence of 

ions and reacting to the local value of the electric potential  

e ef em  = +            (S2) 

Within the framework of the Poisson-Boltzmann approach it is assumed that the mobile 

(ionogenic) charge is given by  

    /iz e kTb

em i i

i

e z n e
 −

=           (S3) 

where e is the elementary (proton) charge, zi is the valence of the ion, ni
b is the bulk 

concentration and of the ion, k is the Boltzmann constant and T is the absolute temperature. 

 One should mention that in Eq.(S3) the specific ion interaction with interfaces and 

other ions, as well the steric effects due to finite ion sizes are neglected.  

Substituting Eq.(S3) into Eq. (S1), one obtains the general form of the PB equation  

( ) i  z e / kTb

i i ef

i

 e z n e
  −

  = − −        (S4) 

It is useful to consider some limiting forms of the above PB equation. For example, in 

the case of a radially symmetric fixed charge distribution and no mobile charge, Eq.(S4) 

expressed in the spherical coordinate system assumes the form  

2

2

1
( )ef

d d
r r

r dr dr


 

 
= − 

 
         (S5) 

where r is the radial coordinate. 

One should mention that Eq.(S5) is valid for an arbitrary magnitude of the charge, and 

in consequence for arbitrary electric potential value. 
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On the other hand, for a radially symmetric fixed charge distribution, 1:1 electrolyte 

(e.g., NaCl) and a position independent electric permittivity Eq.(S4) assumes the form  

 

2 2

2

1
( ) sinh ( ) /ef

ed d
r kT / e r

r dr dr kT


  

  
= −  

   
     (S6) 

where 

 
1 2

1

22

/

kT

e I


 −  

= 
 

          (S7) 

 

is the Debye screening length, 
2

bI z n=  is the ionic strength of the electrolyte solution and nb 

is the bulk concentration of the electrolyte. 

Another frequently used form of the PB equation can be derived by applying the 

linearization procedure, which is justified if the maximum term e / kT  does not 

considerably exceed unity. In this case one obtains the linear form of the PB equation  

 

2 2 ( ) /ef r     = −          (S8) 

 

It is useful to derive some limiting analytical solutions using the above forms of the PB 

equation. Accordingly, integration of  Eq.(yields  the following expression for the electric 

potential distribution inside the sphere  

( )
( )

( )

( )
2

2s r ef r

q rdr
r r dr dr

r r r
   

 
= − = −         (S9) 

where ( ) ( ) 2

2

1
efq r r r dr

r
=                  (S10) 

and r is the reference potential. 

For a position independent electric permittivity and a uniform charge distribution 

Eq.(S9) simplifies to  

2 2

36 8

ef

s r r

s s

r Q r

a


  

 
= − = −                    (S11) 

where  

34

3
efQ a =

                     
(S12) 
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is the net charge within the sphere and s is the constant electric permittivity of the sphere. 

 Thus, the uniform potential at the sphere surface is given by  

0
8

s r

s

Q

a
 


= −                        (S13) 

Assuming that outside the sphere there are no charges, the potential vanishes according to the 

formula  

0s

a

r
 =                    (S14) 

Using the boundary condition 
s

s

d d

dr dr

 
 
   

=   
  

 at r = a one obtains  

0(1 )
4 8 2

r

s s

Q Q

a a


 

  
= + = +                  (S15) 

where 

0
4

Q

a



=                    (S16) 

 

Thus, the electric potential distribution within the sphere is explicitly given by 

2

0 02
(1 )

2 2
s

s s

r

a

 
  

 
= + −                  (S17) 

 

The average potential in the sphere is given by  

( )2

0 0

0

1
4

5

a

s

s s

r r dr
v


    


= = +                (S18) 

where 
34

3
sv a=  is the sphere volume.  

It is interesting to calculate the potential for a sphere of the size corresponding to the 

myoglobin molecule. Hence assuming a = 2 nm, Q = 1 e and the dielectric permittivity of the 

pure water at 298 K, i.e., 78.6×8.85×10-12 C (V m)-1 one obtains 0 = 9.18 mV. Accordingly, 

for Q=24 e (this corresponds to the nominal PROPKA charge at pH 3.5) one has 0 = 220 mV 

at the sphere surface, whereas the average potential is equal to 260 mV. This potential would 

produce an enormous electric field at the sphere surface equal to 1.4×108 V m-1 . Therefore, 

one can deduce that such a strong field would exert considerable electric forces on free ions 

present inside the sphere (mainly protons or OH- groups) and on the ions present in the 
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electrolyte solution. This result in the formation of an electric double-layer and an significant 

compensation of the primary surface charge of the sphere.  

Moreover, the electric potential in the sphere should affect the local pH value shifting it 

toward larger values for positively charged spheres and toward smaller values in the opposite 

case of negatively charged spheres. These effects are quantitatively analyzed in the following 

section. 

 

2. Calculating the Electric Potential Distribution within and around the Myoglobin 

Molecule  

2.1 Linear Models  

 

We first consider a uniformly charged sphere immersed in an electrolyte solution where 

the mobile ions cannot penetrate into its interior. The non-linear PB equation describing the 

electric potential distribution within the sphere is as follows (see Fig.S1) 

2

2

1
( ) /s

ef

dd
r r

r dr dr


 

 
= − 

 
  for a < r ≤ a             (S19) 

On the other hand, the electric potential distribution within the electrolyte is described by the 

linear form of the PB equation 

2 2

2

1 d d
r

r dr dr


 

 
= 

 
  for a < r < ∞             (S20)

  

with the following boundary conditions  

   

s
s

d d

dr dr

 
 
   

=   
  

  at r = a             (S21) 

 

where ε is the electric permittivity of the electrolyte. 
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Fig. S1. Potential distribution within and outside a charged sphere in electrolyte solution – no 

ion penetration into the sphere. 

 

 

Assuming a uniform charge density within the sphere the potential distributions inside 

and outside (within the double-layer) region are (se Fig. S1) 

 

( )
2

0 2

( )

0

1

2
s r

s

r a

s

r
r

a

a
e

r




  



  − −

= −

=

            (S22)  

 

Using the above boundary conditions, Eq.(S21), one can derive the following formula 

for 0s  

 

( ) ( )
0 0

1

1 4 1
s

Q

a a a
 

  
= =

+ +
            (S23)  

 

Accordingly, the reference potential at the sphere center is 

 

0 0

1

2
r s

s


  


= +             (S24)  
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One can infer from Eq.(S22) observe that the 0s  potential exponentially vanishes with 

the distance from the sphere surface, proportionally to ( )
1

a
−

 

Analogously, the average potential in the sphere is given by  

 

4

0 0 02

0

1 4 1

2 5

a

s r s

s s s

r dr
v a

  
    

 
= − = +             (S25)  

 

We also consider a more general case where the penetration of ions into the sphere 

becomes possible. In this model it is also assumed that there is an uncharged core part within 

the sphere having the radius equal to a1, (see Fig. S2), impenetrable to the electrolyte ions. On 

the other hand, the region within the sphere a1 < r < a is accessible for ions and it bears a 

uniformly distributed electric charge of the net magnitude equal to Q.  

 

 

Fig. S2. Schematic representation of the electric potential distribution within and outside an 

ion-penetrable sphere with the impenetrable core part of the radius a1.  

 

In consequence, the PB equation assumes the following form within the ion penetrable 

region 

2 2

2

1 s
s ef s

dd
r /

r dr dr


   

 
= − 

 
            (S26)  

 

where s is the reciprocal double-layer parameter for 1a r a  . 

 

The PB equation in the electrolyte has the form  

2 2

2

1 d d
r

r dr dr


 

 
= 

 
            (S27) 
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The boundary conditions for Eq. (S26) are  

 

0sd

dr


=                   at 1r a=

 
             (S28)  

0s s =         at r a=  

 

On the other hand, the general boundary condition for the PB equation in the bulk, 

Eq.(S27) is as follows  

0
d

dr


=          at br R=  (stagnant solutions)            (S29) 

 

where, bR is the external boundary radius. 

 

Eq.(S29) is applicable for the crowding environment conditions, i.e., for concentrated 

protein suspensions. For infinitely diluted suspension where bR  >> a, it simplifies to the usual 

form  

0 =         at r →             (S30) 

The PB inside the molecule and in the electrolyte are coupled by the boundary condition 

 

s
s

d d

dr dr

 
 
   

=   
  

     at r a=                (S31) 

 

The electric potential distribution within the sphere, which fulfills the first boundary 

condition given by Eq.(S28) has the form 

( ) ( ) ( )1 1 2 1sinh coshs r s s

a
r C r a C r a

r
   = − − + −               (S32) 

 

where C1 and C2 are the constants of integration given by  

 

( ) ( )
0

1

1 1sinh cosh

r s

s s

C
a a a a

 

 

−
=

− + −
            (S33)  

 

2 1 1sC a C=             (S34)  

 

and  

 

( ) ( )
02 2 3

1

3

1 ( / )

ef

r

s s s sa a a

 
 

   
= =

−
            (S35)  
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On the other hand, the potential distribution in the electrolyte for Rb/a >>1 is given by

( ) ( )

0

r a

s

a
r e

r

  − −=                   (S40) 

 Exploiting the third boundary condition, Eq.(S31), one obtains the explicit formula for 

the surface potential  

 

( )0 2 1, , / , /s r s sf a a a a     =             (S36)  

 

where the 2f  function is given by  

 

( ) ( ) ( )

3
2

3 1 11 sinh cosh
r

s s s

s

f
f

f a a a a a a




   


=

+ + − + −  

                (S37) 

where 

 

 

3 1 1 1 1( ) cosh ( ) ( 1)sinh ( )s s s s sf a a a a a a a a    = − − + − −              (S38) 

 

 The potential distribution within the sphere is given by 

 

( ) ( )
( ) ( )

( ) ( )
1 1 1

0

1 1 1

sinh cosh

sinh cosh

s s s

s r r s

s s s

r a a r aa
r

r a a a a a

  
   

  

− + −
= − −

− + −
             (S39)  

  

The average potential in the ion-penetration region can be calculated as  

1

1 2 0'

4
( sinh cosh )

a

s r s s a

s a

a
r C r C r dr f

v


    = − + =             (S41)  

where ( )' 3 3

1

4

3
sv a a= −  and the constant fa is given by     

1 2a rf I I= − −                     (S42)

  
3

1 1 1 1 1'

4
cosh ( / )cosh (1/ )sinh (1/ ) sinh )s s s s s s

s s

a
I C a a a a a a a a

v a


     


 = − − +      (S43)  

 
3

2 2 1 1 1'

4
sinh ( / )sinh (1/ )cosh (1/ )cosh )s s s s s s

s s

a
I C a a a a a a a a

v a


     


 = − − +        (S44)  

 

 The average potential within the molecule is needed for evaluating the pH shift 

according to the method described later on. 
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2.2 The Non-Linear Model 

  

For the non-linear models, the general PB equation formulated in spherical coordinates 

was applied  

2

2

1
( ) ( )i  z e / kTb

i i ef

i

d d
 r r e z n e r
r dr dr


 − 

= − − 
 

               (S45) 

 

 To facilitate its numerical solution this equation was transformed to a set of two non-linear 

ordinary differential equations 

d
E

dr


= −  

( )
1 ( )2

/ ( )
( )  d

i  z e / kTb

i i ef

i

d rdE
e z n e r r E E

dr r r r

 
 



−  
= − − − −  

  
             (S46) 

where E is the electric field.     

 Eq.(S46) was expressed in the dimensionless form using the following scaling  

/ chu   = =  

/ ( )chw E E  = =    (S47) 

/r r a=  

/ch kT e =  

where   is the scaled (dimensionless) potential and E  is the scaled electric field. 

In this way, Eq.(S46) is transformed to the following equation system  

du
a w

dr
= −  

2 2 1
( ) / ( ) b

f i i

dw e a d
r r z n e w w

kT adr r dr

 
 

  

−
= − − −  (S48) 

where  

( ) ( )
2 2

( )f ef ef

ch

e a a
r r r

kT a a
  

   
= =   (S49) 

is the dimensionless fixed charge density  

One should mention that Eq.(S49) is valid for an arbitrary magnitude of the charge, and in 

consequence for arbitrary electric potential value. 
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For a symmetric electrolyte where 1 az z z= − = ,
 
Eq.(S48) assumes the form  

du
a w

dr
= −  

( ) ( )
2 1

/ sinhf

dw d
r a z w w

dr r dr


   


= − − −   (S50) 

 For a uniform charge density, one has  

( )
( )

3

1

3

4 1 /
f

ch

Q
r

a a a a


  
=

 −
 

  (S51) 

 The boundary condition at the surface of the core region within the sphere (see Fig. S2) 

can be formulated postulating the vanishing of the electric field E  

0w E= =    at   1 /r a a=                         (S52) 

 However, the electric potential at the core is not known and should be determined from 

the boundary condition at the external cell given by Eq.(S29) expressed in the dimensionless 

form  

0
du

dr
=     at   /br R a=              (S53) 

 Accordingly, the calculation algorithm was the following. Initially, the equation system 

given by Eq.(S50) was numerically solved by a precise forth order Runge-Kutta method using 

the boundary condition Eq.(S53) and a guessed potential at the core c .  

 Because of a large instability of the equation system, Eq.(S50) especially for a  > 1 the 

calculations were started from low fixed charge using the guessed potential value derived from 

the linear model, given by Eq.(S39). An efficient iteration scheme was applied in order to 

derive the core potential with a relative precision of 10-6 . Using this value, the potential at the 

sphere surface 0s , i.e., at r = a was calculated by solving once again the initial equation 

system, Eq.(S50) within the domain a1/a < r/a < 1. The potential obtained for the initial charge 

is applied as a useful guessed value for larger charges systematically increased by a fixed 

increment.  

 Primary, in these calculations the dependencies of the surface and the average potential 

on the total fixed charge were obtained for a set of the dimensionless parameters, i.e.,  

( )0 2 1, , , / , / , /s s b sf Q a a a a R a    =                (S54)  

where 0 0 /s s ch  =  is the normalized surface potential at the sphere.  
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 Using this algorithm the dependencies of the normalized surface and the average potentials 

on the  charge are calculated. They are shown in Fig. 3 for the set of parameters corresponding 

the myoglobin molecule of the dimeter 4 nm immersed in a 0.15 and 0.01 M, 1:1 electrolyte 

solution with the core size of 2 nm.  

MI15PS i MI02PS

Q [e]

0 5 10 15 20 25 30

0

1

2

3

Qo [e] vs pso  

Qo [e] vs psa 0,15 
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Col 6 vs psa 10-2 

Col 6 vs psi 10-2 

1

2

3

4

 

Fig. S3. The dependence on the dimensionless potentials on the charge Q  calculated for the 

following set parameters: 1 / 0.5a a = , /bR a =   , / 1s  =  

1. the average potential, ionic strength of 0.01 M, a = sa = 2.54 

2. the surface potential, ionic strength of 0.01 M, a = sa = 2.54 

3. the average potential, ionic strength of 0.15 M, a = sa = 0.657 

4. the surface potential, ionic strength of 0.15 M, a = sa = 0.657 

The dashed line shows the surface potential acquired in the case of no double-layer.  

 

 Subsequently, the non-linear dependencies expressed by Eq.(S54) were numerically 

inverted in order to obtain the following dependencies of the charge on the average potential 

s  , for the set of the above defined dimensionless parameters, i.e.,  

( )1

2 1, , , / , / , /s s b sQ f a a a a R a    −=              (S55) 

  

 It is interesting to observe that the derivative of the 
1

2f
−

 function in respect to the 

potential represents the normalized electric capacity of the particle (molecule).  
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Fig. S4. The dependence of fixed charge Q  on the average potential inside obtained for the 

same set parameters as for Fig. S3. 

1. ionic strength of 0.15 M 

2. ionic strength of 0.01 M 

The dashed line shows the dependence of the nominal charge on the surface potential in the 

case of no electric double-layer.  

 

 As shown in Fig. S4, the slope of the 0Q  vs. s  dependencies  increases with ionic 

strength and becomes considerable larger than in the case of no electric double-layer (depicted 

by the dashed line in Fig. S4).  

 The 
1

2. ( )sQ vs f −   functions are useful for developing an efficient scheme to 

calculate the pH shift within the ion-penetrable region of the molecule. This becomes feasible 

by observing that the local pH within the molecule is a liner function of the average potential 

inside, i.e.,  

( )
0

1
pH pH

ln 10
s= +      (S56)  

where 0pH is the bulk pH. 

Thus,  

( )( ) ( )0ln 10 pH pH ln 10 pHs  = − =             (S57) 

where pH is the pH shift within the molecule.      
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In consequence Eq.(S55) can be expressed as     

( )1

2 pHQ f −=                                                                                                                 (S58) 

 

The results shown In Fig. (S4) suggest that the pH shift should be a non-linear function of the 

fixed charge. 

Comparing the dependence expressed by Eq.(S58) with the nominal charge Qp derived 

using the existing software (for example PROPKA [3] or the H++3.0 [4]) approximated by a 

convenient interpolating function one can directly determine the pH shift as shown in Fig. S5. 

This procedure only requires a numerical solution of one nonlinear equation.  

 

 

 

Fig. S5. A scheme for calculating the pH shift due to electrostatic potential (positive branch) 

and calculation of the effective (corrected) charge. 

 

 

A simpler situation appears for the low potential range,  where the dependence of the 

charge on pH becomes a linear function, i.e.,  

( )0QQ xC x= −             (S59)  

where pH ,x =  

 0 0pHx = is the initial pH (see Fig. S5) and CQ is the constant proportional to the  electric 

capacity for the lower potential range.  
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In this case, one can derive useful analytical solutions describing the pH shift if the 

nominal charge is interpolated by a convenient polynomial function. For example, using the 

PROPKA modeling, the nominal charge of the myoglobin molecule can be approximated by  

 
2

2 1 0Qf c x c x c= + +             (S60)  

 

where  2 1 00.94, 16.2, 67.8c c c= = − =  

Combining Eqs.(S59-60) one can formulate the following expression for calculating the 

pH shift  

( )2

2 1 1 1 0 0 0Q Qc x c C x c C x+ − + + =             (S61)  

  

 The real root of this equation, which exists if ( ) ( )
2

1 2 0 0/ 4Q Qc C c c C x−  +  

is given by  

( )

( )

1/2

2 0 01

1 2

2 1

4
1 1

2

QQ

Q

c c C xC c
x

c c C

  +−   = − − 
 −   

             (S62)  

 

Therefore, the pH shift and the shifted nominal charge Q1 can be calculated as follows 

 

( )
1 0

1 1

pH=

Q

x x

Q f x

 −

=
                    (S63)  

 

Consequently, the normalized surface potential at r = a is given by  

 

( )0 2 1 1, , , / , / , /s s b sf Q a a a a R a    =             (S64)  

 

whereas the effective (compensated) charge within the molecule cQ  can be calculated from 

the dependence  

04 sc chQ a  =             (S65)  

 

  The zeta potential  , defined as the electric potential in the slip plane [2], is 

numerically calculated for the given set of the parameters 1 1, , , / , / , /s b sQ a a a a R a     

solving the non-linear PB equation using the known value of the surface potential 0s  as the 

boundary condition at the molecule surface. It is usually assumed that the shear plane is 

located at the distance from the molecule surface equal to s , which is identified with the 
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hydrated size of the counter-ions. It is assumed that s  is equal to 0.35 nm that corresponds 

to the hydrated radius of the Cl- ions.  

 On the other hand, for the linear model, one can calculate the zeta potential using 

Eq.(S36). For dilute systems, where ( )bR a − >> 1, this equation simplifies to the form 

( )0 2 1 1, , , / , /s s

ch s s s ch

s s

a a
e f Q a a a a e

a a

        
 

− −
= =

+ +
          (S66) 
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