Supporting Information

Temperature dependent molecular fluorescence of [Ag*m***]** *n***+ quantum clusters stabilized by phosphate glass networks**

Kai Ren,^a Xiuxia Xu,^a Zeyu Yao,^a Xiaotong Chen,^a Tian Hu,^a Pengcheng Li,^a

Xianping Fan,^{a,*} Jincheng Du,^b Xvsheng Qiao^{a,*} and Guodong Qian^a

^a State Key Laboratory of Silicon Materials & School of Materials Science and

Engineering, Zhejiang University, Hangzhou 310027, China

^b Department of Materials Science and Engineering, University of North Texas,

Denton, Texas 76203-5017, U.S.

***Corresponding Author.** Dr. Xvsheng Qiao: E-mail: qiaoxus@zju.edu.cn; Tel.: +86- 571-87951234. Dr. Xianping Fan: E-mail: fanxp @zju.edu.cn; Tel.: +86-571-87951234.

Mass spectra analysis details:

We firstly get the mass spectra of silver doped/undoped glass samples, H_2O and dilute hydrochloric acid. Then, compared with $H₂O$ and dilute hydrochloric acid, the characteristic peaks of the silver doped glass samples were identified as two groups of peaks (*m*/*z* = -354; -355; -356; -357; -358; -359 and *m*/*z* = -439; -440; -441; -442; -443; -444) with almost fixed Δ*m*/*z=*1 between adjacent peaks. The *m/z=*1 gap among the mass spectra peaks are generated from isotopes of Ag and Zn with $\Delta m = 2$ (Table S3, S4). Accordingly, the molecular fragments charge was evaluated as -2. Subsequently, to further determine the fluorophosphate coordinated molecule fragment, we compiled a small program to compute all possible $[nAg^+(m-n)Ag^0][P_xZn_yO_zF_w]$ $aH^+bOH^-cH_2O$ configuration with $n = (0, 10)$, $m = (1, 20)$, $x = (2, 32)$, $y = (0, 10)$, $z = (6, 160)$, $w =$ $(0-20)$, $a = (1-50)$, $b = (1-50)$, $c = (1-20)$. We started the program to match the strongest peaks ($m/z = -356$ and $m/z = -442$) by using the most abundant isotope (¹⁰⁷Ag; $64Zn$, after that we can extend the program selected $[nAg^+(m$ $n)Ag^{0}[[P_{x}Zn_{y}O_{z}F_{w}]$ *a*H⁺ *b*OH *c*H₂O configurations to all the other mass-to-charge ratio of the characteristic peaks within the same m/z group. To a further step, according to phosphate glass structure that $[P(O, F)₄]$ connect into chain structure and $[ZnO₄]$ tetrahedral units in the investigated $P_2O_5-ZnF_2-Ag$ glass, we excluded unreasonable configurations, such as:

$$
[Ag_2(H_2O)_1(P_3Zn_3O_{12}F_0H_0)]^2 \cdot (m/z = -356);
$$

\n
$$
[Ag_2(H_2O)_2(P_4Zn_1O_{11}F_5H_1)]^2 \cdot (m/z = -356);
$$

\n
$$
[Ag_5(H_2O)_0(P_3Zn_1O_{12}F_0H_2)]^2 \cdot (m/z = -442);
$$

\n
$$
[Ag_4(H_2O)_3(P_3Zn_1O_7F_5OH_2)]^2 \cdot (m/z = -442);
$$

......

Finally, $[Ag_2(H_2O)_2(P_4Zn_1O_{11}F_5H_1)]^2$ (m/z = -356) and $[Ag_4(H_2O)_3(P_4O_{11}F_5H_3)]^2$ (m/z $= -442$), as shown in Figure 4c-d, were finally worked out as the highly possible molecular fragments containing $[Ag_2]^{2+}$ and $[Ag_4]^{2+}$ configurations, respectively.

Table S1 Glass transition (T_g), crystallization peak (T_g), melting temperature (T_m) and

Glass	$T_{\rm g}$ (°C)	$T_c({}^{\circ}C)$	T_m ^o C)	$\Delta T = (T_{\rm g} - T_{\rm c})^{\circ}C$
P0Ag	464	615	765	151
P0.4Ag	478	609	762	131
P0.8Ag	465	602	758	137
P1.2Ag	450	598	752	148
P1.6Ag	452	596	743	144
P2Ag	443	591	761	148
P_2O_5 -MgO-CaO-Na ₂ O ¹	448	554	764	106

glass stability (ΔT) for different glass formulations.

1. M. T. Islam, N. Sharmin, G. A. Rance, J. J. Titman and I. Ahmed, *Journal of Biomedical Materials Research Part B Applied Biomaterials*, 2019.

Name	P0.4Ag	P0.8Ag	P1.2Ag	P1.6Ag	P2Ag
Q^1 (%)	40.7	38.2	39.2	39.0	38.4
Q^2 (%)	59.3	61.8	60.8	61.0	61.6

1c) calculated by 2-Gaussian fit curves.

Table S3 Isotopes of zinc and their proportion.

Table S4 Isotopes of silver and their proportion.

Table S5 The lifetimes (τ) and the standard deviation (σ) of $[Ag_4]^{2+}$ QCs ($\lambda_{ex} = 375$

Temperature/K	Lifetime/ns		
78	4.057 ± 0.008		
90	4.145±0.016		
105	4.055 ± 0.010		
120	4.052 ± 0.014		
135	4.081 ± 0.011		
150	4.003 ± 0.017		
165	3.936±0.007		
180	4.000 ± 0.008		
195	3.964±0.012		
210	3.785±0.004		
225	3.774 ± 0.008		
240	3.879±0.012		
255	3.861 ± 0.002		
270	3.858±0.010		
285	3.886±0.007		
300	3.685 ± 0.008		
315	3.710±0.009		
330	3.676 ± 0.020		
345	3.634 ± 0.002		
360	3.670 ± 0.006		
375	3.541 ± 0.008		
390	3.486±0.004		
405	3.277 ± 0.003		
420	3.057 ± 0.011		
435	2.936±0.004		
450	2.816±0.009		

nm, λ_{em} = 390 nm) in P1.6Ag from 78K to 450K.

Figure S1 Absorption spectra of 60PO_{2/5}-40ZnF₂-xAg glasses measured with different light incident angles (90°, 45°, 5°): (a)P0.4Ag; (b)P0.8Ag; (c)P1.2Ag; (d)P1.6Ag; (e)P2Ag.

Figure S2 Reflection spectra of $60PO_{2/5}$ -40ZnF₂-xAg glasses measured with different light incident angles (90°, 45°, 5°): (a)P0.4Ag; (b)P0.8Ag; (c)P1.2Ag; (d)P1.6Ag; (e)P2Ag.

Figure S3 Mass spectrum of PxAg ($x = 0$, 0.8, 1.6) and H₂O, HCl (H₂O): (a) m/z range: $-300 \sim -400$, (b) m/z range: $-400 \sim -500$.

Figure S4 Ag $3d_{5/2}$ X-ray photoelectron spectra (XPS) spectra of P_2O_5 -ZnF₂-*x*Ag glasses.

Figure S5 Normalized fluorescence spectra of different silver species in 95PO_{2/5}- $5\mathrm{Na}_2\mathrm{O}$ -1.6Ag glass and $60\mathrm{PO}_{2/5}$ -40ZnF $_2$ -1.2Ag glass.

Figure S6 Polarized spectra of $60PO_{2/5}$ - $40ZnF_{2}$ -1.6Ag glasses: (a) λ_{ex} = 280nm; (b) λ_{ex} = 320nm.

Figure S7 The fitted $S_1 \rightarrow S_0$ emission by a Gaussian multi-peak decomposition method from the total emission excited at 320nm of $[Ag_4]^2$ ⁺ QCs in P1.6Ag from 10K to 300K.