Supporting Information

Temperature dependent molecular fluorescence of $[Ag_m]^{n+}$ quantum clusters stabilized by phosphate glass networks

Kai Ren,^a Xiuxia Xu,^a Zeyu Yao,^a Xiaotong Chen,^a Tian Hu,^a Pengcheng Li,^a

Xianping Fan,^{a,*} Jincheng Du,^b Xvsheng Qiao^{a,*} and Guodong Qian^a

^a State Key Laboratory of Silicon Materials & School of Materials Science and

Engineering, Zhejiang University, Hangzhou 310027, China

^b Department of Materials Science and Engineering, University of North Texas,

Denton, Texas 76203-5017, U.S.

*Corresponding Author. Dr. Xvsheng Qiao: E-mail: qiaoxus@zju.edu.cn; Tel.: +86-571-87951234. Dr. Xianping Fan: E-mail: fanxp @zju.edu.cn; Tel.: +86-571-87951234.

Mass spectra analysis details:

We firstly get the mass spectra of silver doped/undoped glass samples, H₂O and dilute hydrochloric acid. Then, compared with H₂O and dilute hydrochloric acid, the characteristic peaks of the silver doped glass samples were identified as two groups of peaks (m/z = -354; -355; -356; -357; -358; -359 and m/z = -439; -440; -441; -442; -443;-444) with almost fixed $\Delta m/z=1$ between adjacent peaks. The m/z=1 gap among the mass spectra peaks are generated from isotopes of Ag and Zn with $\Delta m = 2$ (Table S3, S4). Accordingly, the molecular fragments charge was evaluated as -2. Subsequently, to further determine the fluorophosphate coordinated molecule fragment, we compiled a small program to compute all possible $[nAg^{+}(m-n)Ag^{0}][P_{x}Zn_{v}O_{z}F_{w}]\cdot aH^{+}\cdot bOH^{-}\cdot cH_{2}O$ configuration with $n = (0 \sim 10), m = (1 \sim 20), x = (2 \sim 32), y = (0 \sim 10), z = (6 \sim 160), w =$ $(0\sim 20)$, $a = (1\sim 50)$, $b = (1\sim 50)$, $c = (1\sim 20)$. We started the program to match the strongest peaks (m/z = -356 and m/z = -442) by using the most abundant isotope (¹⁰⁷Ag; ⁶⁴Zn), after that we can extend the program selected $[nAg^+(m$ nAg⁰][P_xZn_yO_zF_w]·aH⁺·bOH⁻·cH₂O configurations to all the other mass-to-charge ratio of the characteristic peaks within the same m/z group. To a further step, according to phosphate glass structure that $[P(O, F)_4]$ connect into chain structure and $[ZnO_4]$ tetrahedral units in the investigated P2O5-ZnF2-Ag glass, we excluded unreasonable configurations, such as:

$$\begin{split} & [Ag_{2}(H_{2}O)_{1}(P_{3}Zn_{3}O_{12}F_{0}H_{0})]^{2-} (m/z = -356); \\ & [Ag_{2}(H_{2}O)_{2}(P_{4}Zn_{1}O_{11}F_{5}H_{1})]^{2-} (m/z = -356); \\ & [Ag_{5}(H_{2}O)_{0}(P_{3}Zn_{1}O_{12}F_{0}H_{2})]^{2-} (m/z = -442); \\ & [Ag_{4}(H_{2}O)_{3}(P_{3}Zn_{1}O_{7}F_{5}OH_{2})]^{2-} (m/z = -442); \end{split}$$

.....

Finally, $[Ag_2(H_2O)_2(P_4Zn_1O_{11}F_5H_1)]^{2-}$ (m/z = -356) and $[Ag_4(H_2O)_3(P_4O_{11}F_5H_3)]^{2-}$ (m/z = -442), as shown in Figure 4c-d, were finally worked out as the highly possible molecular fragments containing $[Ag_2]^{2+}$ and $[Ag_4]^{2+}$ configurations, respectively.

Table S1 Glass transition (T_g) , crystallization peak (T_c) , melting temperature (T_m) and

Glass	$T_{\rm g}(^{\circ}{\rm C})$	$T_{\rm c}(^{\circ}{\rm C})$	$T_{\rm m}(^{\circ}{\rm C})$	$\Delta T = (T_g - T_c)^{\circ} C$
P0Ag	464	615	765	151
P0.4Ag	478	609	762	131
P0.8Ag	465	602	758	137
P1.2Ag	450	598	752	148
P1.6Ag	452	596	743	144
P2Ag	443	591	761	148
P ₂ O ₅ -MgO-CaO-Na ₂ O ¹	448	554	764	106

glass stability (ΔT) for different glass formulations.

1. M. T. Islam, N. Sharmin, G. A. Rance, J. J. Titman and I. Ahmed, *Journal of Biomedical Materials Research Part B Applied Biomaterials*, 2019.

Name	P0.4Ag	P0.8Ag	P1.2Ag	P1.6Ag	P2Ag
Q ¹ (%)	40.7	38.2	39.2	39.0	38.4
Q^{2} (%)	59.3	61.8	60.8	61.0	61.6

1c) calculated by 2-Gaussian fit curves.

 Table S3 Isotopes of zinc and their proportion.

Zn	⁶⁴ Zn	⁶⁶ Zn	⁶⁷ Zn	⁶⁸ Zn
Proportion	48.6%	27.9%	4.1%	18.8%

 Table S4 Isotopes of silver and their proportion.

Ag	¹⁰⁷ Ag	¹⁰⁹ Ag
Proportion	51.8%	48.2%

Temperature/K	Lifetime/ns
78	4.057±0.008
90	4.145±0.016
105	4.055±0.010
120	4.052±0.014
135	4.081±0.011
150	4.003±0.017
165	3.936±0.007
180	4.000 ± 0.008
195	3.964±0.012
210	3.785±0.004
225	3.774±0.008
240	3.879±0.012
255	3.861±0.002
270	3.858±0.010
285	3.886±0.007
300	3.685 ± 0.008
315	3.710±0.009
330	3.676±0.020
345	3.634 ± 0.002
360	3.670±0.006
375	3.541 ± 0.008
390	3.486±0.004
405	3.277±0.003
420	3.057±0.011
435	2.936±0.004
450	2.816±0.009

nm, λ_{em} = 390 nm) in P1.6Ag from 78K to 450K.

Figure S1 Absorption spectra of 60PO_{2/5}-40ZnF₂-*x*Ag glasses measured with different light incident angles (90°, 45°, 5°): (a)P0.4Ag; (b)P0.8Ag; (c)P1.2Ag; (d)P1.6Ag; (e)P2Ag.

Figure S2 Reflection spectra of 60PO_{2/5}-40ZnF₂-*x*Ag glasses measured with different light incident angles (90°, 45°, 5°): (a)P0.4Ag; (b)P0.8Ag; (c)P1.2Ag; (d)P1.6Ag; (e)P2Ag.

Figure S3 Mass spectrum of PxAg (x = 0, 0.8, 1.6) and H₂O, HCl (H₂O): (a) *m*/*z* range: -300 ~ -400, (b) *m*/*z* range: -400 ~ -500.

Figure S4 Ag $3d_{5/2}$ X-ray photoelectron spectra (XPS) spectra of P_2O_5 -ZnF₂-xAg glasses.

Figure S5 Normalized fluorescence spectra of different silver species in $95PO_{2/5}$ - $5Na_2O-1.6Ag$ glass and $60PO_{2/5}-40ZnF_2-1.2Ag$ glass.

Figure S6 Polarized spectra of $60PO_{2/5}$ - $40ZnF_2$ -1.6Ag glasses: (a) $\lambda_{ex} = 280nm$; (b) $\lambda_{ex} = 320nm$.

Figure S7 The fitted $S_1 \rightarrow S_0$ emission by a Gaussian multi-peak decomposition method from the total emission excited at 320nm of $[Ag_4]^{2+}$ QCs in P1.6Ag from 10K to 300K.