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Part 1. Phonon spectrum and specific heat capacity

   
Figure S1. (a) Phonon spectrum and (b) the specific heat capacity versus temperature 

in Cr2Ge2Te6 (CGT) monolayer.

The phonon spectrum of Cr2Ge2Te6 (CGT) monolayer calculated by the Vienna ab 

initio simulation (VASP) package and PHONOPY code using density function 

perturbation theory (DFPT) is plotted in Figure S1(a). There is no imaginary frequency 

in phonon spectrum, revealing the thermodynamic stability of CGT monolayer. 

Meantime, it demonstrates the validation of specific heat capacity which is obtained 

simultaneously and presented in Figure S1(b). Then, we use the temperature 

dependence of specific heat capacity to calculate the Debye temperature according D

to the Debye’s T 3-law
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where n is the number of atoms, and kB is the Boltzmann constant. The Debye 

temperature of monolayer CGT is ~243 K, which would be used in Debye model to 

determine the vibrational displacements of atom/molecule at finite temperature. 

Part 2. Spin-wave spectrum based on Heisenberg model

In 221 supercell, there are the nearest, next-nearest, and next-next-nearest exchange 

interactions. Here, only the nearest exchange interaction is highlighted, because the 
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next-nearest and next-next-nearest exchange interaction are much weaker1. So we start 

from a nearest-neighbor (N) exchange Hamiltonian: 
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where S = (Sx, Sy, Sz) is the spin vector of arbitrary magnetic lattice, its amplitude is S0, 

and J1 is the exchange constant of the nearest-neighbor interaction. Due to the 

dependence of Sx, Sy, and Sz, transverse components  are defined. S±  =  Sx ±  i Sy

According to Holstein-Primakoff (HP) approximation,2,3  and Sz can be written as:S±
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The Heisenberg Hamiltonian can be given as:
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Then, the coordinate space is transferred into reciprocal space by Fourier transform,
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where k is wave vector, r is the position vector of magnetic lattice point, and N is the 

number of unit cell in supercell. The Hamiltonian in reciprocal space can be given by:
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with structural factor . Z is the coordination number for the  
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nearest interaction. So the magnon frequency of system with single magnetic atom at k 

point can be written as: 
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There are two magnetic Cr atoms in the unit cell of CGT monolayer, thus there are 

acoustic and optical branches in spin-wave spectrum and Eq. (S7) should be updated 

as:

. (S8) 1 0=J 1 kk ZS h 



S4

Here ‘+’ and ‘-’ denote the optical ( ) and acoustic ( ) branches of spin-wave 
kh 

kh

spectrum, respectively.

Part 3. Mean-square displacements 

The mean-square relative displacement ij of atom pairs in crystal is defined as: 
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where  is the thermal displacement of the ith atom from its equilibrium position and iu

 is a vector pointing from the ith atom to the jth atom. The mean-square relative ijr

displacement can also be re-written as: 
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The first two terms are the mean-square displacements of the ith atom and the jth atom, 

while the third term represents the displacement correlation function. Using the phonon 

density of state (PDOS) and corresponding eigenvectors, ij can be expressed as:4
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where N is the number of atoms, M is the mass of atom,  is the eigenvectors with ,ske

wave vector k for the sth phonon branch, is the phonon frequency, and ,sk

 is the phonon occupation number with reduced Plank constant ħ  
, B,
1=

1ss k Tn
e kk h

and Boltzmann constant kB. It is clear the displacement of atom pairs not only depends 

on the mass of atom, but also relies on the distance of atom pairs. Eq. (S11) is equivalent 

to the more convenient integral expression:
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with the normalized and projected PDOS:5
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To simple Eq. (S12), we take a spherical average and neglect the difference between 

longitude and transverse phonon modes6. So  can be rewritten as:   
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where c is the sound velocity, and  is the Debye frequency. After integrating over D

, it can be obtained:
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where . This equation is called “correlated Debye model”5,7. The  
D

1
0

= 1
T

xx e dx


 

first term is the uncorrelated mean-square thermal displacement , and the last  22 iu

two terms represent the displacement correlation function (DCF). As demonstrated in 

the following, if the DCF can be ignored, the mean-square thermal displacement for 

one atom can be calculated by:

. (S16)
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Here, we calculated the mean-square relative displacements  of Cr, Ge, and Te atom ij

pairs, and the results are shown in Figure S2(a). We can find the DCF has an impact on 

the mean-square relative displacement, and DCF relies on the mass of atom and the 

distance of atom pairs. For instance, the masses of Cr and Te are 52 and 127.6 amu 

while the distances of Cr atom pair and Te atom pair are 3.99 Å and 3.863 Å in CGT 

monolayer, which causes the DCF for Te atom is smaller than Cr. Meantime, the 

distance of Ge atom pair with mass of 72.6 amu is 6.91 Å, so that the DCF is close to 

zero. In order to describe the influence of DCF quantitatively,  is defined asij
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The results are presented in Figure S2(b). It is obvious for Cr, Ge, and Te atoms in ij

CGT monolayer are less than 10% in the temperature range of 0~60 K, revealing the 

DCF can be ignored in low temperature. Therefore, all of these atom displacement 

parameters used in our main text are calculated by Eq. (S16) without DCF, as in 

previous studies8-11. 

    

Figure S2. The mean-square relative displacements for Cr, Ge, and Te atoms (a), the 

difference between the mean-square relative displacements with and without 

displacement correlation function (b).

Part 4. Structural distortion and change in exchange constant

There are structural distortion and charge transfer in CGT monolayer with 

molecular adsorption, and we calculate the nearest exchange constant of CGT 

monolayer after adsorption by taking both distortion and charge transfer into 

consideration. To evaluate the structure distortion, we show the bond lengths of Ge-Ge, 

Ge-Te, and Te-Cr bonds in CGT monolayer before and after molecular adsorption in 

Table. S1. It is clear that the distortion caused by adsorption mainly occurs in the Ge-

Ge bond, while the bond lengths of Ge-Te and Te-Cr bonds are almost unchanged. 

Moreover, for separating the influence of distortion in CGT monolayer and charge 

transfer between molecule and substrate quantitatively, we replace the distorted CGT 
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substrate in NO_CGT system with pristine CGT monolayer, and calculate energies 

under different magnetic configurations (ferromagnetic and antiferromagnetic) and the 

nearest exchange constant J1, as shown in Table. S2. As shown in manuscript, the 

nearest exchange constant of pristine CGT monolayer is 6.87 meV. It is clear that the 

increase in J1 due to charger transfer between molecule and substrate is 1.44 meV, and 

there is further increase of 0.82 meV if distortion in CGT sheet is taken into account. 

Thus the charge transfer between gas molecules and CGT substrate has larger impact 

on the nearest exchange constant of CGT monolayer. 

Table. S1. The bond lengths of Ge-Ge, Ge-Te, and Te-Cr bonds in Cr2Ge2Te6 (CGT) 

monolayer before and after molecular adsorption. 

Table. S2. The energies under ferromagnetic (EFM) and antiferromagnetic (EAFM) 

configurations, and the nearest exchange constants J1 of NO_CGT systems with 

distorted (NO_CGT) and pristine CGT (NO_Pre_CGT) monolayers.

System EAFM (eV) EFM (eV) J1 (meV)

NO_CGT -213.031 -213.525 9.13

NO_Pre_CGT -213.015 -213.464 8.31
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