
Bottom-Up Derived Flexible Water Model with Dipole and Quadrupole 

Moments for Coarse-Grained Molecular Simulations 
Chen Li,† Zhongyuan Qin,† Wei Han*† 

†State Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking 

University Shenzhen Graduate School, Shenzhen, 518055, China 

*Corresponding author: email: hanw@pkusz.edu.cn 
 

Electronic Supplementary Information 

  

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2020



S1. Clustering of water clusters based on both energy and geometry 

In the first step of the parameterization of our CG model, we need to partition water molecules 

in an arbitrary configuration into clusters of four based on the atomistic coordinates. We solved 

this partitioning problem by employing a MC-based algorithm to minimize the partition energy 

 Qpar defined in Eq. (3), a quantity which assesses the quality of the partitioning.  Qpar consists 

of two terms, one pertaining to the internal energy (Uintra) of clustered water molecules and the 

other pertaining to the compactness (A) of the cluster indicated by the surface area of the 

tetrahedron formed by these water molecules. The relative importance of the two terms is 

controlled by the factor l. 

The internal energy (Uintra) intuitively would be the most natural indicator of the formation of 

water clusters since water molecules in the same cluster are supposed to interact strongly with 

each other. Hence, we first attempted to cluster waters based purely on the internal energy 

(l=0). For comparison, a distance-based clustering approach described previously (see also Eq. 

2) was conducted using the same sets of AA coordinates. This approach evaluates the quality 

of the clustering results based on the compactness of the resulting clusters. Clearly, the energy-

based approach yielded much lower internal energy per water cluster than the distance-based 

approach (-72 kJ/mol versus -49 kJ/mol) (Table S1). However, the analysis of the RDF of 

COMs of water clusters revealed that the water clusters generated by the energy-based 

approach could come very close and overlap with each other (Figure S1a). This is problematic 

for MD simulations as a small or zero distance between interacting particles tends to cause 

instability in the simulations. On the other hand, the distance-based clustering method has no 

such issue (data not shown). The RDF of water clusters derived with this method displayed 

noticeable distribution only beyond R = 2 Å. 

To deduce how the clusters obtained with the energy-based method could come so close to 

each other, we analyzed the structures of those water clusters that were separated by distances 

of < 2 Å. Figure S1b illustrates one such representative structure. To our surprise, the water 

molecules in these clusters were rather scattered, which explains why it was possible for the 

COMs of the clusters to be positioned in close proximity to one another. Using the average 

surface area A of a tetrahedron formed by four water molecules as a measure of cluster 

compactness (see the Method section), we assessed this property for water clusters separated 

at various distances. The calculated A values obtained with the energy-based method were 

much larger than those obtained with the distance-based method (60-180 Å versus ~20 Å), 

especially for those water clusters with short separations, suggesting that the energy-based 



method can sometimes generate clusters composed of scattered water molecules. We attributed 

this deficiency to how Uintra is defined (see the Method section). Uintra is sensitive to subtle 

configurational differences between compact clusters but imposes little penalty on clusters with 

scattered members. It is likely that the energy-based clustering algorithm allowed some water 

clusters with scattered water molecules to exist in order to ensure that other clusters have 

excellent internal geometry. 

We thus gradually increased the l factor, attempting to find a minimum value with which Uintra 

was still able to play a significant role in clustering while the clusters with scattered members 

could be avoided. It turned out that a value of 0.1 is a reasonable choice (Figure S1a). The 

resulting clusters exhibited similar a cluster size to that of distance-based water clusters 

(Figures S1a and S1c), but their internal energy was considerably lower (-57 kJ/mol versus -

49 kJ/mol). The representative cluster structures (Figure S1d) displayed a good tetrahedral 

geometry, an essential feature that needs to be captured in coarse-graining of water, as 

suggested previously.1 Hence, this l value was adopted in the present study. 

 

S2. Cubic spline functions for short-range nonbonded interactions 

The short-range interactions uIJ(R) are approximated by a cubic spline that connects a series of 

data points that are distributed at {Rk} with function values of {uk}. For a R between Rk and 

Rk+1, the corresponding u(R) can be expressed as 
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where DR is the spacing between data points, h is (R - Rk)/DR with Rk = 𝑘 × ∆𝑅 + 𝑅', and 𝑢!"" 

is the secondary derivative of u(R) at Rk. {𝑢!} and {𝑢!""} are the parameters of u(R) and can be 

determined using target values of the function at each Rk with conditions that the spline is 

differentiable at these positions. The spline is capped at R0=2 Å and RC=12 Å. Below R0, the 

reference data for spline parameterization is normally difficult to obtain as atoms rarely 

approach each other so closely. As such, u(R<R0) is modeled as u(R) = au/R12 + bu where au 

and bu are parametrized to ensure continuity and differentiability at R0. Beyond RC, short-range 

interactions are thought to disappear. Finally, the natural boundary condition, i.e., u"(R0) = 

u"(RC) = 0, is applied. Given that there are two types of interaction sites in our model, three 

cubic splines, are needed to represent the short-range interactions. 



S3. Implementation of iterative Boltzmann inversion method 

UCG can be determined using the iterative Boltzmann inversion (IBI) method.2,3 For instance, 

the nonbonded interaction uAB(R) between sites A and B (Eq. 10) can be parameterized with 

IBI to match the RDFs between the two types of sites. In the IBI procedure, the interaction 

potential is gradually improved through multiple rounds of optimization. In the ith round, the 

potential energy function uAB(i) is updated according to the results of the last round by following: 

𝑢()
(+)(𝑅) = 𝑢()

(+-$)(𝑅) + 𝜉 ln;
𝑔()
(+-$)(𝑅)
𝑔()./0(𝑅)

=				(S2) 

where  x is a tunable parameter of the Boltzmann inversion method to control the update speed 

and usually takes a value of kBT, and 𝑔()
(+-$)(𝑅)  and 𝑔()./0(𝑅)  are the pair of correlation 

functions (or RDFs) derived, respectively, either from the last round of CG simulation or from 

the mapping results obtained from AA simulation as described in the previous section. An 

initial guess for uAB0 was made based on 𝑢()' (𝑅) = −𝑘1T ln 𝑔()./0(𝑅) . We monitored the 

deviation of the RDFs between the CG and AA systems with a functional f[g(i)] defined as:4  

𝑓@𝑔(+)A =
∫ 𝑑𝑅(𝑔()

(+)(𝑅) − 𝑔()./0(𝑅))%

∫𝑑𝑅(1 − 𝑔()./0(𝑅))%
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The optimization was thought to converge if the values of f[g(i)] in two sequential rounds were 

smaller than 10-3. 

The parameterization of bonded parameters shown in Eq. (11) is similar. Of note, as a harmonic 

form of potential function was used to model potential energy of bond stretching and angle 

bending, the IBI scheme illustrated in Eq. (S2) cannot be applied directly to the fitting of these 

bonded parameters, and a modified IBI was adopted here. The AA simulations showed that the 

distributions of bond length and bond angle were apparently consistent with a normal 

distribution and thus can be characterized by the peak position and height. Based on this, we 

assumed that it is possible to use these features as targets to optimize the force constant kb/kq 

and the reference position R0/q0. For a simple system whose Hamiltonian is a function of a 

scalar x, such as Rb or q and has a form of kx(x-x0)2, its maximum probability density is 

proportional to (pkBTkx)1/2. This relationship suggests that in each modified IBI round, the 

bonded parameter kx can be updated according to: 

𝑘2
(+) = 𝑘2

(+-$) + 𝜉!E𝑃(+-$)% − 𝑃33% G			(S4) 

where xk is again a scalar tuning the speed of update of the force constant and P(i-1) and PAA are 

the maximum probabilities of x observed in the i-1th round of CG simulation and the AA 



simulation, respectively. The reference position x0 can be updated according to the difference 

between the peak positions of x distributions obtained from the previous round of CG 

simulation (xpeak(i-1)) and the AA simulation (xpeakAA), i.e.: 

𝑥'
(+) = 𝑥'

(+-$) + 𝜉2 J𝑥4/56
(+-$) − 𝑥4/5633 K.			(S5) 

The iteration stops if the following conditions are met: (1) R0 - R0AA ≤ 0.1 Å; (2) θ0 -q0AA ≤ 

1o; (3) PpeakCG - Ppeakref	≤ 0.05. 

 

S4. Dielectric constant calculation 

The dielectric constant was calculated from the potential of mean force between ions in FlexDQ 

water. For atomistic system, one can calculate dielectric constant by following the standard 

Kirkwood scheme directly. While for CG models, there is a small difference in its definition of 

the permittivity. A dielectric screening coefficient, εr=2.4, is introduced into the FlexDQ water 

model. Therefore, the dielectric properties has contribution from both this screening coefficient 

and the configurations of the CG multipoles. Thus, the oginial definition of dielectric 

permeability in the Kirkwood scheme may not be applicable for the case investigated here. 

Instead, we followed Zhe et al. 5to calculate the permittivity from the PMF between charged 

ions. The basic idea is that according to the general definition of er, it can be calculated as the 

ratio of the work required to bring two charges at a distance R in vacuum to the work required 

in a given medium, i.e., 𝜀7 = 𝑞$𝑞%/4𝜋𝜀'𝐺(𝑅). Here G(R) is the PMF of separating two ions 

at R in water, which can be obtained with the umbrella sampling method.  G(R) will deviate 

from the Coulomb law for short R due to the contribution from short-range nonbonded 

interaction. However, the long-range part of the PMF (for R ranging from 1.2 nm to 1.4 nm) 

where the short-range interactions vanish can be fitted to obtain the permittivity for the FlexDQ 

model by minimizing 

S(𝐺(𝑅) −
𝑞$𝑞%
4𝜋𝜀𝑅)

% .		(S6) 

 

 

S5. Parameterization of FlexDQ in tandem with MARTINI 

We optimized the interactions of wn/wp sites with MARTINI particles by reproducing 

hydration free energy of each MARTINI particle type. Both the original MARTINI water 

model and its PMW version were parameterized in this way to ensure that they can be used to 

model correctly partitioning behavior of biomolecules between water and other organic 



solvent.6 Short-range nonbonded interaction between CG sites in MARTINI is described with 

the LJ potential, i.e., 8!"
9!"

− 8#
9#

, where the coefficients C12 and C6 determine the strength of 

repulsive and attractive forces between CG sites. Following Yesylevskyy et al., we only 

consider the interaction of the wn site with the MARITNI particles while the wp site is not 

visible to the MARTINI particles except for those charged types “Q” (see the next paragraph). 

For non-charged MARTINI types, we first attempted to use the original parameters optimized 

for the PMW model. The hydration free energy was calculated with the thermodynamic 

integration method. The resulting hydration free energy turned out to be systematically 

overestimated (data not shown), indicating the interaction between the wn site and the 

MARTINI particles was too strong. We then gradually scaled down interactions by multiplying 

all the C12 and C6 coefficients with a factor and eventually found that a factor of 0.8 could 

reproduce hydration free energy with a reasonable accuracy (Table S2). 

A key advantage of the MARTINI model is that a large time step can be used to boost 

simulation speed. The time step for the PMW model is normally 20 fs. Although the time step 

that permits stable simulation with our model can be 18 fs for pure water system and 16 fs 

when non-charged MARTINI particles are included. The simulation with our model in tandem 

with charged MARTINI particle was unstable. This largely resulted from the lack of short-

range repulsion between the wp sites and the charged MARTINI particles. As our water model 

is flexible, the wp site may not be always kept within repulsive radius of the central wn site, 

which is different from the distal sites of the PMW model that are attached to the central site 

with fixed bonds. Hence, there is a chance that the wp sites overlap with the non-charged 

MARTINI particles through fluctuation, causing instability of simulations. To avoid this, we 

added a short-range repulsive interaction between the wp sites and the charged MARTINI 

particles. For this interaction, its C6 coefficient was set to zero and C12 was set to a small number. 

We tried the value of C12 in the range of 10-10~10-6 and found that when C12 was not less than 

10-7, simulations with a time step of 14 fs were stable. We also found that the resulting 

hydration free energy of the charged particles in the FlexDQ water remained invariant when 

C12 took values ranging from 10-10 to 10-6 (Table S2). Based on these findings, we chose a C12 

= 10-7 that was sufficiently small but still allowed us to use a time step of 14 fs. Of note, our 

calculation gave rise to very similar hydration free energy for various particle types with either 

a 2 fs time step or a 14 fs time step, suggesting that a large time step of 14 fs does not incur 

any noticeable error in numeric integration in our cases. 

As pointed out previously, the original MARTINI water model, due to the lack of description 



electrostatic interactions, underestimated its interaction with charged solutes, causing the 

unphysical presence of these solutes in nonpolar environment.7 The embedded charges in the 

PMW model improved description of interactions between charged particles and water, 

yielding more negative hydration free energy of ions and thus resulting in more realistic 

behaviors.6 Our model, which was also designed to capture electrostatic elements of solute-

solvent, predicted hydration free energy of the charged particles even more negative than those 

obtained with the PMW model (Table S2). As the charged particle types (“Q” types) represent 

monovalent ions plus its first solvation shell, the hydration free energy of particles of these 

types was difficult to conceive conceptually and to measure experimentally. Thus, there is no 

ground truth for us to determine which of the results is correct. Nonetheless, these hydration 

free energy results are still well below the known hydration free energy of bared monovalent 

ions (e.g., -365 kJ/mol for Na+ and -340 kJ/mol for Cl-)8, which should not be against physical 

intuition. Taken together, these results suggest that our model may furnish a reasonable 

description of solvation of charged solutes, preventing their presence in nonpolar environment 

although a more systematic evaluation of the feasibility of the combination of MARTINI and 

FlexDQ is still needed.   

 

S6. Derivation of Eqs. 17 and 18 

Let us consider an infinite slab of neutral molecules (Scheme S1). The slab has an infinitesimal 

width dw. Let the molecule have an arbitrary charge distribution rC(r) where r is a position 

vector. Let the system be anisotropic in the direction of the slab normal but isotropic in the 

perpendicular directions. We seek to learn the electrostatic potential at a given point R whose 

distance to the slab is L. 

 
Scheme S1. Calculation of electrostatic potential at R arising from a slab of molecules with dipole and quadrupole 
moments. 



We first must consider the electrostatic potential of a single molecule at R. Let µ and Q be 

dipole moment vector and quadrupole moment tensor of the molecule. For a discrete charge 

distribution, µ and Q can be expressed as in Eqs. 4 and 5. When the origin is properly chosen 

such that |r|≪|R|, the electrostatic potential can be decomposed through multipole expansion 

as follows: 

𝜙:;<(𝑹) =
1
4𝜋𝜀 W𝑞=/>𝑅

-$ + 𝝁 ∙ 𝑹Z𝑅-% +
1
2𝑅
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] + Ο(𝑅-A)			(𝑆7) 

where R=|R|, 𝑹Z is a unit vector in the direction of R, and 𝑅\+ and 𝑅\? are its components. The 

first term in Eq. S7 is zero as the molecule is neutral. The second and the third terms represent 

the contribution of dipole moment and quadrupole moment to the potential, respectively. If the 

chance to find a specific dipole moment µ for a molecule in the slab is PD(µ), the average 

dipole potential of the molecule is given by: 

〈𝜙:;<B (𝑹)〉 =
1
4𝜋𝜀 c𝑑𝝁	𝑃

B(𝝁)𝝁 ∙ 𝑹Z𝑅-% =
〈𝝁〉 ∙ 𝑹Z
4𝜋𝜀𝑅% 			(𝑆8) 

where 〈𝝁〉 ≡ 〈𝜇2〉𝒊 + 〈𝜇C〉𝒋 + 〈𝜇D〉𝒌 and 〈𝜇E〉 = ∫𝑑𝝁	𝑃B(𝝁) 𝜇E. In this calculation, the result 

should not depend on the choice of the coordinate system as long as |r|≪|R|. We thus set the 

coordinate system as shown in Scheme S1 to ease the calculation. With this choice of 

coordinate system and on the basis of the fact that the system is isotropic in the directions 

perpendicular to the slab normal, it will be found that 〈𝜙:;<B (𝑹)〉 = cosF〈H$〉
AJK

 where q is the angle 

between R and the slab normal. 

Next, we consider the dipole potential of the molecules in the ring shown in Scheme S1. The 

ring is centered at the projection of R onto the slab, 2l in diameter and dl in width. The 

molecules in the ring should give rise to the same average dipole potential at R. Hence, the 

dipole potential of the entire slab at R is the summation of all the rings varying in radius l, 

which can be expressed as: 

𝜙L<5MB (𝐿) = 2𝜋𝜌𝛿𝑤c 𝑑𝑙	𝑙〈𝜙:;<B (𝑹)〉
N

'
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N
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=
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where r is the number density of the molecules in the slab. Let L be the difference between the 

z coordinates of R and the slab. Summation of the dipole potential arising from the slabs at 

different z positions leads to the expression of the dipole potential at R shown in Eq. 17. 

Following similar arguments, the quadrupole potential of molecules in the slab at R can be 



expressed as: 
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Using the same coordinate system that is used for the calculation of dipole potential, one has 

𝑅\2 = sin𝜃 , 𝑅\C = 0  and 𝑅\D = cos𝜃 . All the terms involving 𝑅\C  in Eq. S10 vanish. After 

integration of the nonzero terms, we can obtain the following expression of quadrupole 

potential of the slab at R as: 

𝜙L<5M
O (𝐿) =

𝜌𝛿𝑤
4𝜀|𝐿| r

2
3
〈𝑄22〉 +

1
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3𝐿
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Using conditions 〈𝑄22〉 = 〈𝑄CC〉  and 𝑄22 + 𝑄CC + 𝑄DD = 0  and summing 𝜙L<5M
O (𝐿)  over all 

slabs eventually led to Eq. 18. 

 

  



 
Table S1. Average internal energy of water clusters obtained with different clustering methods 

 Energy-
based 

Distance-
based 

Energy plus 
surface area 

Average internal 
energy (kJ/mol) -71.9±0.2 -48.7±0.2 -56.7±0.3 

 

 

  



Table S2. Hydration free energy (in a unit of kJ/mol) of MARTINI CG particles in water 

modeled with the FlexDQ model, the original MARTINI water model and the PMW model. 

 FlexDQ 
(2fs)a FlexDQ (14fs)a Original 

MARTINId PMWd 

P1 -14.2 -14.8 -13.6 -13.5 
P2 -14.1 -14.7 -13.6 -13.5 
P3 -18.6 -19.5 -18.5 -18.7 
P4 -18.6 -19.4 -18.5 -18.7 
P5 -23.4 -24.4 -24.7 -24.5 
C1 8.0 8.2 11.6 10.6 
C3 2.0 1.9 4.7 4 
C4 1.9 1.9 4.7 4 
Na -9.7 -10.1 -7.8 -8.3 
Nd -9.5 -10.2 -7.8 -8.3 
Nda -9.6 -10.1 -7.8 -8.3 
N0 -4.4 -5.0 -2.8 -3.2 
Qa -209.2b -199.5 (ND, -197.0)c -24.7 -67.5 
Qd -137.6 -139.5 (-139.6, -139.5) -24.7 -67.5 
Qda -143.3 -145.3 (-145.0, -145.1) -24.7 -73.8 
Q0 -132.8 -134.6 (-134.5, -134.4) -24.7 -62.8 

a) All the results were obtained with the TI method. The results shown in the first and second 

columns were obtained with a time step of 2 fs and 14 fs, respectively. b) For “Q” types, a 

correction was added to remove ion-ion self-interaction due to the combined use of the Eward 

method and the periodic boundary condition.9 This contribution was calculated as 
P"

QJ
JR
R%
− $

K
K S
R
	where L and L’ are the edge length of simulation boxes of fully coupled and 

decoupled systems, respectively, e is the dielectric permeability of water and 𝜉= -2.84. This 

correction was similar for all the systems tested and equal to ~ -48~-50 kJ/mol. Standard errors: 

0.2-0.4 kJ/mol. c) All the results for “Q” types were calculated with C12 = 10-7. The values in 

the parenthesis denote the data obtained with C12=10-10 (left) and 10-6 (right). “ND”: the result 

is unavailable because the simulation was not stable. d) From Ref 6. 

 

 

  



 

 

 
Figure S1. Dependence of clustering results on the choice of l used in the score function Qpar 
for clustering. (a) RDFs of COMs of water clusters obtained by clustering water molecules 
with different l. (c) Average surface areas of water clusters that are found to be separated at a 
distance of R. The results obtained with our clustering algorithm using l =0 or 0.1 are shown 
as black and red curves, respectively. Those obtained with the geometry-based clustering 
method are shown as a dotted black curve. The representative grouping of a water cluster with 
l =0 or 0.1 is shown in (b) and (d), respectively. The water molecules grouped in the same 
cluster are shown as spheres of the same color. In (b), dashed lines outline the tetrahedron of 
clusters and circles denote their COMs. 
 

 

 

 

 



 
Figure S2. Water clusters derived with different atomic water models share similar 
distributions of dipole moment (a) and quadrupole moment (b-d). Black, red and blue curves 
are reference data generated by mapping the results obtained with TIP4P-ew, SPC/E and TIP3P, 
respectively. In the calculation of quadrupole moment, the center of negative charges was set 
to the origin. The dipole vector was aligned with x axis. The three mapped sites were in the xy 
plane. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure S3. Intensity map of three-body correlation function 𝑔&'(&'(&' "𝑅, 𝑅′% as function of the distances 

(𝑅 and 𝑅′). Shown from left to right are the plots for hypothetical ensemble without correlation (a), the mapped 

ensemble (b) and the ensembles obtained with FlexDQ (c) and NC3 (d), respectively. Rows from top to bottom 

correspond to the triples of wn-wn-wn, wp-wn-wn, and wp-wp-wn respectively. Shown as color bars are the scale 

of intensity. 
 

 

 

 

 

 

 

 

 



 
Figure S4. Intensity map of three-body correlation function	𝑔(𝑅) , 𝑅′) (top) and 𝑔(𝑅* , 𝑅′) (bottom) as function 

of the intramolecular degree and intermolecular degree (𝑅*/𝑅) and 𝑅′). Shown from left to right are the plots for 

hypothetical ensemble without correlation (a), the mapped ensemble (b) and the ensembles obtained with FlexDQ 

(c) and NC3 (d), respectively. Shown as color bars are the scale of intensity. 
 

 

 
 
 
 

  



 
Figure S5. Intensity map of three-body correlation function 𝐺(𝑅*, 𝑅′) as function of the distances (𝑅*, 𝑅′) and 

their included angle. Shown from top to bottom are the plots for wp-wn-wp, wp-wn-wn and wn-wp-wn, 

respectively. Shown from left to right are the plots for the mapped ensemble (a, d, g) and the ensembles obtained 

with FlexDQ (b,e,h) and NC3 (c, f, i), respectively. Shown as color bars are the scale of G function with blue 

colors for positive values and red colors for negative values. 
 
 
 
 

 
  



 
Figure S6. The water-air electrostatic potential profile along the z axis obtained with (a) TIP4P-
ew and (b) FlexDQ. The center of the water slab is located at 0 nm.  
  



 

 
Figure S7. Distribution of the particle density for different CG groups of DPPC bilayer, with 
respect to the bilayer center (Z=0). Solid line is PMW’s result, dash line with square dot is 
FlexDQ’s result. The parameters of FlexDQ with MARTINI membrane is fit to reproduce the 
hydration free energy. 
 
  



 
Figure S8. Radial distribution functions of wn sites of CG water particles obtained from 
simulations at 300 K with a time step varying from 2 fs to 16 fs. 
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