Supplemental Material

to

Hindered Rotor Benchmarks for the Transition States of Free Radical Additions

to Unsaturated Hydrocarbons

Yanjin Sun, ^{1*} Kieran P. Somers, ¹ Quan-De Wang, ^{1, 2} Caoimhe Farrell, ¹ Henry J. Curran^{1*}

¹ Combustion Chemistry Centre, School of Chemistry, Ryan Institute, MaREI, National University of Ireland,

Galway, Ireland

² Low Carbon Energy Institute and School of Chemical Engineering, Jiangsu Province Engineering Laboratory

of High Efficient Energy Storage Technology and Equipment, China University of Mining and Technology,

Xuzhou, 221008, People's Republic of China

^{*} Corresponding author: <u>y.sun5@nuigalway.ie</u>,

1. The bond lengths of the newly formed rotors for the TSs of $\dot{C}H_3$, \dot{C}_2H_3 , \dot{C}_2H_5 , $CH_3\dot{O}$ radical additions to C_2H_2 , which are calculated at CCSD(T)-F12/cc-pVDZ-F12 and twelve DFT methods.

Label	Ŕ	CCSD(T)- F12	B2PLYP-D3			B3LYP			M06-2X			ω B97X-D		
		cc-pVDZ-	6- 6- cc- 6		6- 6- cc- 6		6-	6-	cc-	6-	6-	cc-		
		F12	31+G(d,p)	311++G(d,p)	pVTZ	31+G(d,p)	311++G(d,p)	pVTZ	31+G(d,p)	311++G(d,p)	pVTZ	31+G(d,p)	311++G(d,p)	pVTZ
TS1	ĊH3	2.24	2.26	2.23	2.23	2.34	2.30	2.30	2.24	2.22	2.22	2.29	2.26	2.26
TS9	Ċ ₂ H ₃	2.28	2.30	2.27	2.27	2.40	2.33	2.34	2.28	2.26	2.25	2.32	2.29	2.29
TS17	Ċ ₂ H ₅	2.24	2.25	2.23	2.23	2.33	2.29	2.29	2.23	2.21	2.21	2.28	2.25	2.25
TS25	CH ₃ Ò	1.98	1.98	1.96	1.97	2.02	1.99	2.00	1.97	1.95	1.96	2.00	1.97	1.98

Table S1 The bond lengths of the newly formed rotors for the TSs of $\dot{C}H_3$, \dot{C}_2H_3 , \dot{C}_2H_5 , $CH_3\dot{O}$ radical additions to C_2H_2 .

2. The dihedrals of the newly formed rotors for the TSs of CH₃, C₂H₃, C₂H₅, CH₃O radical additions to C₂H₂, which are calculated at CCSD(T)-F12/cc-pVDZ-F12 and twelve DFT methods.

Table S2 The dihedrals of the newly formed rotors for the TSs of $\dot{C}H_3$, \dot{C}_2H_3 , \dot{C}_2H_5 , $CH_3\dot{O}$ radical additions to C_2H_2 .

Label	Ŕ	CCSD(T)- F12	B2PLYP-D3			B3LYP			M06-2X			ωB97X-D		
		cc-pVDZ- F12	6- 31+G(d,p)	6- 311++G(d,p)	cc- pVTZ	6- 31+G(d,p)	6- 311++G(d,p)	cc- pVTZ	6- 31+G(d,p)	6- 311++G(d, p)	cc- pVTZ	6- 31+G(d,p)	6- 311++G(d,p)	cc- pVTZ
TS1	ĊH3	-0.96	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TS9	Ċ ₂ H ₃	47.07	64.60	64.68	53.44	-180.00	80.03	72.09	47.30	-169.83	-42.00	60.33	59.35	54.98
TS17	Ċ ₂ H ₅	0.86	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TS25	CH ₃ Ò	1.94	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

 The T1 diagnostic values of the CCSD(T)/cc-pVQZ calculations for the TSs of CH₃, C₂H₃, C₂H₅, CH₃O radical additions to C₂H₂ and C₂H₄.

R	eactant	T1 diagnostic			
А	В	CCSD(T)/cc-pVQZ			
C_2H_2		0.0383			
C ₂ H ₄	ĊH ₃	0.0302			
C ₂ H ₂		0.0446			
C ₂ H ₄	Ċ ₂ H ₃	0.0398			
C ₂ H ₂		0.0336			
C ₂ H ₄	Ċ ₂ H ₅	0.0271			
C_2H_2		0.0344			
C ₂ H ₄	CH ₃ Ò	0.0311			

Table S3 T1 diagnostic values of the CCSD(T)/cc-pVQZ calculations

4. **Table S4** The maximum differences of the hindered barriers calculated by twelve DFT methods for the newly formed internal rotors in target reactions. (kJ mol⁻¹)

Label	Reac. B	$\Delta E_{\rm HR}^{\rm max}$	Label	Reac. B	$\Delta E_{\mathrm{HR}}^{\mathrm{max}}$						
	ĊH ₃ addition										
TS1	C_2H_2	0.30	TS2	C_2H_4	0.79						
TS3	C_3H_4 -a(E)	0.53	TS4	C_3H_4 -a(I)	0.49						
TS5	C_3H_4 - $p(E)$	0.39	TS6	C_3H_4 - $p(I)$	0.67						
TS7	$C_3H_6(E)$	0.84	TS8	$C_3H_6(I)$	1.30						
Ċ ₂ H ₃ addition											
TS9	C_2H_2	1.10	TS10	C_2H_4	1.91						
TS11	C_3H_4 -a(E)	2.21	TS12	C_3H_4 -a(I)	2.30						
TS13	C_3H_4 - $p(E)$	1.55	TS14	C_3H_4 - $p(I)$	1.24						
TS15	$C_3H_6(E)$	2.65	TS16	$C_3H_6(I)$	2.01						
		Ċ₂H₅ ado	lition								
TS17	C_2H_2	2.42	TS18	C_2H_4	2.36						
TS19	C_3H_4 - $a(E)$	1.98	TS20	C_3H_4 -a(I)	1.41						
TS21	C_3H_4 - $p(E)$	3.02	TS22	C_3H_4 - $p(I)$	3.16						
TS23	$C_3H_6(E)$	2.71	TS24	$C_3H_6(I)$	2.31						
		CH₃Ö ad	dition								
TS25	C_2H_2	4.40	TS26	C_2H_4	2.38						
TS27	C_3H_4 - $a(E)$	3.56	TS28	C_3H_4 -a(I)	5.78						
TS29	C_3H_4 - $p(E)$	6.73	TS30	C_3H_4 - $p(I)$	4.62						
TS31	$C_3H_6(E)$	4.39	TS32	$C_3H_6(I)$	3.43						

Label	Reac. B	$\Delta \boldsymbol{B}(\boldsymbol{\chi})_{\max}$	Label	Reac. B	$\Delta B(\chi)_{\rm max}$						
		ĊH₃ ad	dition								
TS1	C ₂ H ₂	0.13	TS2	C ₂ H ₄	0.09						
TS3	C_3H_4 -a(E)	0.12	TS4	C ₃ H ₄ -a(I)	0.07						
TS5	C_3H_4 - $p(E)$	0.14	TS6	C ₃ H ₄ -p(I)	0.08						
TS7	$C_3H_6(E)$	0.13	TS8	$C_3H_6(I)$	0.08						
	Ċ ₂ H ₃ addition										
TS9	C ₂ H ₂	0.18	TS10	C ₂ H ₄	0.09						
TS11	C_3H_4 -a(E)	0.12	TS12	C ₃ H ₄ -a(I)	0.13						
TS13	C_3H_4 - $p(E)$	0.14	TS14	C ₃ H ₄ -p(I)	0.10						
TS15	$C_3H_6(E)$	0.20	TS16	$C_3H_6(I)$	0.11						
		\dot{C}_2H_5 ad	ldition								
TS17	C ₂ H ₂	0.14	TS18	C ₂ H ₄	0.06						
TS19	C_3H_4 -a(E)	0.09	TS20	C_3H_4 -a(I)	0.05						
TS21	C_3H_4 - $p(E)$	0.04	TS22	C_3H_4 - $p(I)$	0.04						
TS23	$C_3H_6(E)$	0.13	TS24	$C_3H_6(I)$	0.04						
		CH₃Ó ao	ddition								
TS25	C ₂ H ₂	0.15	TS26	C ₂ H ₄	0.19						
TS27	C_3H_4 -a(E)	0.17	TS28	C_3H_4 -a(I)	0.30						
TS29	C_3H_4 - $p(E)$	0.08	TS30	C_3H_4 -p(I)	0.07						
TS31	C ₃ H ₆ (E)	0.25	TS32	C ₃ H ₆ (I)	0.11						

5. **Table S5** The maximum differences of rotational constants calculated by twelve DFT methods for the newly formed internal rotors in target reactions. (cm⁻¹)

6. **Table S6** The maximum percentage errors of Q_{HR} as a function of temperature calculated by twelve DFT methods for the newly formed internal rotors in target reactions. (in percentage)

Label	Reac. B	$\frac{Q_{\rm HR}^{\rm DFT} - Q_{\rm HR}^{\rm DFT}}{D_{\rm HR}^{\rm DFT}}$	Label	Reac. B	$\frac{Q_{\rm HR}^{\rm DFT} - Q_{\rm HR}^{\rm DFT}}{DET}$		
		$Q_{\rm HR}^{\rm DFT_{min}}$			$Q_{\rm HR}^{\rm DFT_{min}}$		
		ĊH₃ ado	lition				
TS1	C_2H_2	2.81	TS2	C_2H_4	8.43		
TS3	C_3H_4 -a(E)	5.49	TS4	C_3H_4 -a(I)	6.05		
TS5	C_3H_4 - $p(E)$	4.11	TS6	C_3H_4 - $p(I)$	7.32		
TS7	$C_3H_6(E)$	9.31	TS8	$C_3H_6(I)$	12.64		
		Ċ ₂ H ₃ add	dition				
TS9	C_2H_2	15.79	TS10	C ₂ H ₄	62.43		
TS11	C_3H_4 -a(E)	51.75	TS12	C_3H_4 -a(I)	32.78		
TS13	C_3H_4 - $p(E)$	17.04	TS14	C_3H_4 - $p(I)$	22.68		
TS15	$C_3H_6(E)$	87.08	TS16	$C_3H_6(I)$	49.61		
		Ċ ₂ H ₅ ad	dition				
TS17	C_2H_2	77.85	TS18	C ₂ H ₄	31.44		
TS19	C_3H_4 -a(E)	20.27	TS20	C_3H_4 -a(I)	37.56		
TS21	C_3H_4 - $p(E)$	123.54	TS22	C_3H_4 - $p(I)$	49.74		
TS23	$C_3H_6(E)$	21.81	TS24	$C_3H_6(I)$	16.84		
		CH₃Ö ad	dition				
TS25	C_2H_2	30.4	TS26	C_2H_4	9.16		
TS27	C_3H_4 - $a(E)$	11.06	TS28	C_3H_4 -a(I)	17.55		
TS29	$\overline{C_3H_4}$ -p(E)	77.30	TS30	$\overline{C_3H_4}$ -p(I)	42.83		
TS31	$C_3H_6(E)$	41.33	TS32	C ₃ H ₆ (I)	35.47		

 Rotational constants for the newly formed rotors of CH₃/C₂H₃/C₂H₅/CH₃O radical additions to C₂H₂/C₂H₄/C₃H₄-a/C₃H₄-p/C₃H₆ calculated at twelve DFT methods.

Fig. S1 Rotational constants for the newly formed methyl rotors of $\dot{C}H_3$ radical additions to $C_2H_2/C_2H_4/C_3H_4$ -a/C₃H₄-p/C₃H₆ calculated at twelve DFT methods.

Fig. S2 Rotational constants for rotors formed by \dot{C}_2H_3 radical additions to $C_2H_2/C_2H_4/C_3H_4$ -a/C₃H₄-p/C₃H₆ calculated at twelve DFT methods.

Fig. S3 Rotational constants for rotors formed by \dot{C}_2H_5 radical additions to $C_2H_2/C_2H_4/C_3H_4$ -a/C₃H₄-p/C₃H₆ calculated at twelve DFT methods.

Fig. S4 Rotational constants for rotors formed by $CH_3\dot{O}$ radical additions to $C_2H_2/C_2H_4/C_3H_4$ -a/C₃H₄-p/C₃H₆ calculated at twelve DFT methods.

 Hindrance potentials for the newly formed rotors of CH₃/C₂H₃/C₂H₅/CH₃O radical additions to C₂H₂/C₂H₄/C₃H₄-a/C₃H₄-p/C₃H₆ calculated at twelve DFT methods.

Fig. S5 Hindrance potentials for the newly formed methyl rotors of $\dot{C}H_3$ radical additions to $C_2H_2/C_2H_4/C_3H_4$ -a/C₃H₄-p/C₃H₆ calculated at twelve DFT methods.

Fig. S6 Hindrance potentials for the newly formed methyl rotors of \dot{C}_2H_3 radical additions to $C_2H_2/C_2H_4/C_3H_4$ -a/C₃H₄-p/C₃H₆ calculated at twelve DFT methods.

Fig. S7 Hindrance potentials for the newly formed methyl rotors of \dot{C}_2H_5 radical additions to $C_2H_2/C_2H_4/C_3H_4$ -a/C₃H₄-p/C₃H₆ calculated at twelve DFT methods.

Fig. S8 Hindrance potentials for the newly formed methyl rotors of $CH_3\dot{O}$ radical additions to $C_2H_2/C_2H_4/C_3H_4$ -a/C₃H₄-p/C₃H₆ calculated at twelve DFT methods.

 The relative energy deviations between DFT and DLPNO-CCSD(T)/CBS results for the newly formed rotors of CH₃/C₂H₃/C₂H₅/CH₃O radical additions to C₂H₂/C₂H₄.

Fig. S9 The relative potential energy differences calculated by DFT and DLPNO-CCSD(T)/CBS methods for rotors formed by $\dot{C}H_3/\dot{C}_2H_3/\dot{C}_2H_5/CH_3\dot{O}$ radical additions to C_2H_2 and C_2H_4 , and potential energy differences are relative to the lowest energy difference of each hindrance potential.

10. The percentage deviations between DFT and the corresponding mean energies for rotors formed by $\dot{C}H_3/\dot{C}_2H_3/\dot{C}_2H_5/CH_3\dot{O}$ radical additions to C_2H_2/C_2H_4 at 500 K, 1000 K and 2000 K.

Fig. S10 The percentage deviations between DFT and the corresponding mean energies for rotors formed by $\dot{C}H_3/\dot{C}_2H_3/\dot{C}_2H_5/CH_3\dot{O}$ radical additions to C_2H_2/C_2H_4 at 500 K, 1000 K and 2000 K.

11. The maximum $E_{\text{HR}}(\text{DLPNO-CCSD}(T)/\text{CBS} - \text{DFT})$ for rotors formed through $\dot{C}H_3/\dot{C}_2H_3/\dot{C}_2H_5/CH_3\dot{O}$ radical additions to C_2H_2/C_2H_4 .

	B2PLYP-D3			B3LYP				M06-2X		ωΒ97Χ-D		
$\Delta E_{\rm HR}({\rm MAX})$	6-	6-	cc-									
	31+G(d,p)	311++G(d,p)	pVTZ									
TS1	0.07	0.06	0.05	0.18	0.13	0.17	0.07	0.09	0.09	0.15	0.06	0.10
TS2	0.41	0.41	0.29	0.11	0.07	0.18	0.63	0.64	0.51	0.37	0.38	0.11
TS9	1.60	1.97	0.73	1.44	1.48	1.25	0.29	0.42	0.50	0.88	0.95	0.66
TS10	1.17	1.14	0.69	1.63	1.44	1.42	0.44	0.52	0.46	0.76	0.56	0.65
TS17	1.13	0.74	0.53	1.64	1.24	1.27	0.47	1.09	1.13	0.97	0.68	0.54
TS18	1.33	0.99	0.65	1.64	1.35	1.27	1.33	1.46	1.42	0.92	0.80	0.51
TS25	1.75	2.16	1.20	1.04	0.60	1.36	2.34	3.13	1.83	1.32	1.45	0.77
TS26	2.01	2.16	2.54	1.71	1.94	2.41	1.38	1.73	1.41	1.10	1.39	1.68

Table S7 The maximum deviations of hindrance potential energies between DFT and DLPNO-CCSD(T) methods for rotors formed through $\dot{C}H_3/\dot{C}_2H_3/\dot{C}_2H_5/CH_3\dot{O}$ radical additions to C_2H_2/C_2H_4 .

12. The maximum deviations of hindered internal rotation partition function between DFT and DLPNO-CCSD(T) methods for rotors formed through $\dot{C}H_3/\dot{C}_2H_3/\dot{C}_2H_5/CH_3\dot{O}$ radical additions to C_2H_2/C_2H_4 .

Table S8 The maximum deviations of $Q_{\rm HR}$ between DFT and DLPNO-CCSD(T) methods for rotors formed through $\dot{\rm CH}_3/\dot{\rm C}_2{\rm H}_3/\dot{\rm C}_2{\rm H}_5/{\rm CH}_3\dot{\rm O}$ radical additions to ${\rm C}_2{\rm H}_2/{\rm C}_2{\rm H}_4$.

	B2PLYP-D3			B3LYP				M06-2X		ωB97X-D		
$\Delta Q_{\rm HR}({\rm MAX})$	6-	6-	cc-	6-	6-	cc-	6-	6-	cc-	6-	6-	cc-
	31+G(d,p)	311++G(d,p)	pVTZ	31+G(d,p)	311++G(d,p)	pVTZ	31+G(d,p)	311++G(d,p)	pVTZ	31+G(d,p)	311++G(d,p)	pVTZ
TS1	0.25	-0.28	1.11	0.68	0.35	-0.40	0.89	0.28	-0.18	0.98	-0.50	0.59
TS2	-4.17	-4.10	-2.87	0.44	-0.31	1.38	-6.30	-6.42	-5.19	-3.29	-3.37	-1.08
ТS9	-4.58	-6.47	-4.10	-5.80	-4.79	-9.05	-3.88	-0.13	-6.88	-0.61	-1.15	-1.79
TS10	23.38	21.55	11.74	36.79	32.43	33.71	-6.76	-8.48	-8.25	12.85	8.47	12.58
TS17	9.57	30.78	-16.55	9.94	24.52	13.61	40.57	29.52	-5.82	-14.23	17.16	8.60
TS18	-5.19	-6.22	-4.21	13.08	8.82	9.67	-13.18	-13.95	-13.15	-5.14	-6.83	-4.41
TS25	4.69	-3.34	-1.44	13.06	-0.97	12.12	-6.51	-14.90	-5.69	6.05	-4.71	6.39
TS26	-5.45	-7.26	-4.36	0.37	-2.25	-1.33	-4.82	-5.79	-3.36	-2.13	-4.47	-2.49