Supplementary Information

Cu/Graphene Interdigitated Electrodes with Various Copper Thicknesses for UV-illumination-enhanced Gas Sensors at Room Temperature

Min Zhao,^{ab} Attia Falak,^{bc} Yi Tian,^{bc} Lanqin Yan,^b Rujun Liu,^a Weijun Chen,^a Hanfu Wang,^b Tao Wu,^{*a} Peipei Chen,^{*bc} Weiguo Chu^{*bc}

^a School of Information Engineering, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China.

^b CAS Key Laboratory for Nanophotonic Materials and Devices, Nanofabrication Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.

^c Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100039, China

*Email: wgchu@nanoctr.cn, chenpp@nanoctr.cn, wutao@whu.edu.cn

Figure S1. Experimental and fitted ellipsometry curves of the Cu film deposited on graphene in 6 nm Cu/Gr device.

Figure S2. Experimental and fitted ellipsometry curves of the Cu film deposited on graphene in 8 nm Cu/Gr device.

Figure S3. Experimental and fitted ellipsometry curves of the Cu film deposited on graphene in 10 nm Cu/Gr device.

Table S1.	Fitted	parameters	derived	from e	llipsometry	/ data	in Fig.	S1-S3.
							<u> </u>	

	Mean square					
Device	Air Roughness of Copper oxide	Copper	Graphene	SiO ₂	error of fitting	
6 nm Cu/Gr	2.76	5.29	0.34	319.47	0.708	
8 nm Cu/Gr	2.64	7.45	0.34	312.05	0.801	
10 nm Cu/Gr	2.86	8.61	0.34	343.54	0.599	

Figure S4. Polynomial fittings of $\Delta R/R_0$ versus time plots at baseline for 8 nm Cu/Gr device exposed to (a) NO₂, and (b) NH₃, under UV light illumination.

Figure S5. Stability behavior of 8 nm Cu/Gr device when exposed to (a) 5 ppm NO₂, and (b) 105 ppm NH₃, under UV light illumination.

Figure S6. Optimized configurations including top view, side view, charge difference densities and TDOS for NO₂ molecule adsorbed on surface of (a) defective graphene, (b) Cu/Gr, (c) Cu₂O/Gr, (d) CuO/Gr. Optimized configurations including top view, side view, charge difference densities and TDOS for NH₃ molecule adsorbed on surface of (e) Cu/Gr, (f) Cu₂O/Gr.

Figure S7. Response curves of 8 nm Cu/Gr device at RT exposed for 3 min to (a) 4 ppm NO₂, and (b) 100 ppm NH₃ with various relative humidity (RH) within the range of 20-70% under UV light illumination.

Table S2. Comparison of sensing performances to NO₂ gas for 8 nm Cu/Gr device in this work with those graphene-based gas sensors reported in the literatures.

Sensing materials	Concentration of NO ₂	Operating temperature	Response time	Response (ΔR/R ₀)	Recovery time	References
Al-decorated CVD graphene	1.2 ppm	150°C	3 min	-3%	>20 min	1
ZnO-decorated CVD graphene	10 ppm	200 °C	13 min	-30%	>80 min	2
SnO ₂ -decorated RGO	1000 ppm	RT	4 min	-22.87%	1 min	3
MoS ₂ -RGO	0.5 ppm	200°C	9 min	-9.1%	2 min	4
3D Graphene Hydrogel	4 ppm	RT	9 min	-23.5%	11 sec	5
MoS ₂ -RGO	3 ppm	160 °C	27 sec	-18.6%	20 sec	6
SnO ₂ nanofiber decorated RGO	0.5 ppm	RT	10 min	+23%	7.3 min	7
rGO-Cu ₂ O mesocrystal	2 ppm	RT	15 min	+67.8% (ΔΙ/Ι₀)	>25 min	8
CuO/rGO nanohybrids	1 ppm	RT	1 min	14% (ΔΙ/Ι ₀)	0.57 min	9
Cu-decorated CVD graphene	5 ppm	RT	1.4 min	-30.9%	6.8 min	This work

Sensing materials	Concentration of NH3	Operating temperature	Response time	Response (ΔR/R₀)	Recovery time	References
Pt-decorated RGO	1000 ppm	RT	2.7 min	+10%	4.8 min	10
CVD graphene on aluminum oxide substrate	1300 ppm	RT	2.6min	+1.5%	2.2 min	11
Graphene -ssDNA	10 ppm	RT	25 min	+22%	Incomplete	12
Ti-decorated CVD graphene	400 ppm	RT	2.5 min	+17.9%	3 min	13
Graphene -porphyrin	160 ppm	RT	1 min	-8.34%	Incomplete	14
Graphene Platelets	150 ppm	RT	12 min	+29%	>20 min	15
CVD graphene	100 ppm	300 °C	25 min	+54%	10 min	16
Cu ₂ O-function- alized-graphen e-sheets	25 ppm	RT	_	+2%	_	17
Cu ₂ O nanorods modified RGO	100 ppm	RT	0.47 min	+70%	3.43 min	18
Cu-decorated CVD graphene	105 ppm	RT	2.3 min	+29.1%	22.4 min	This work

Table S3. Comparison of sensing performances to NH₃ gas for 8 nm Cu/Gr device in this work with those graphene-based gas sensors reported in the literatures.

References

- 1 B. Cho, J. Yoon, M. G. Hahm, D.-H. Kim, A. R. Kim, Y. H. Kahng, S.-W. Park, Y.-J. Lee, S.-G. Park, J.-D.Kwon, C. S. Kim, M. Song, Y. Jeong, K.-S.k Nam and H. C. Ko, J. Mater. Chem. C, 2014, 2, 5280-5285.
- 2 H.F. Xie, K.K. Wang, Z.Q. Zhang, X.J. Zhao, F. Liu, H.C Mu, RSC Adv., 2015, 5, 28030-28037.
- 3 D. Zhang, J. Liu, B. Xia, J. Electron. Mater., 2016, 45, 4324-4330.
- 4 H.Long, A.Harley-Trochimczyk, T.Pham, Z.Tang, T.Shi, A.Zettl, C.Carraro, M. A.Worsley, R.Maboudian, Adv. Func. Mater., 2016, 26, 5158-5165.
- 5 J. Wu, K. Tao, Y. Guo, Z. Li, X. Wang, Z. Luo, S. L.Feng, C. L. Du, D. Chen, J. M. Miao,

L. K. Norford, Adv. Sci., 2017, 4, No.1600319.

- 6 Z. Wang, T. Zhang, C. Zhao, T. Han, T. Fei, S. Liu, G. Lu, Sens. Actuators B: Chem., 2018, 260, 508-518.
- 7 W.W. Lia, J.H. Guo, C. Li, W.Z.Qi, Y.L. Sun, J.L. Xu, M.X. Sun, H.W. Zhu, L. Xiang, D. Xie, T. L.Ren, Sens. Actuators B: Chem. 2019, 290, 443-452.
- 8 S. Deng, V. Tjoa, H. M. Fan, H. R. Tan, D. C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei, C. H. Sow, J. Am. Chem. Soc., 2012, 134, 4905-4917.
- 9 Z. J. Li, Y. Y. Liu, D. F. Guo, J. J. Guo, Y. L. Su, Sens. Actuators B: Chem., 2018, 271, 306-310.
- 10 J. Wang, S. Rathi, B. Singh, I. Lee, S. Maeng, H. I. Joh and G. H. Kim, Sens. Actuators B: Chem., 2015, 220, 755-761.
- 11 C. S. Yang, A. Mahmood, B. Kim, K. Shin, D. H. Jeon, J. K. Han, S. D. Bu, S. Park, W. J. Choi and B. Doudin, 2D Materials, 2016, 3, 011007.
- 12 Y. Jung, H.G. Moon, C. Lim, K. Choi, H.S. Song, S. Bae, S.M. Kim, M. Seo, T. Lee, S. Lee, H.H. Park, S.C. Jun, C.Y. Kang, C. Kim, Adv.Func. Mater., 2017, 27, No.1700068.
- 13 M. Zhao, L. Q. Yan, X. F. Zhang, L. H. Xu, Z. W. Song, P. P. Chen, F. L. Dong, W. G. Chu, J. Mater. Chem. C, 2017, 5, 1113-1120.
- 14 C. Mackin, V. Schroeder, A. Zurutuza, C. Su, J. Kong, T. M. Swager, Tomás Palacios, ACS Appl. Mater. Interfaces, 2018, 10, 16169-16176.
- 15 S. Nufer, M.J. Large, A.A. King, S.P. Ogilvie, A. Brunton, A.B. Dalton, ACS Appl. Mater. Interfaces, 2018, 10, 21740-21745.
- 16 H.Y. Wu, Q.F. Li, X.R. Bu, W.H. Liu, G.M. Cao, X. Li, X.L. Wang, Sens. Actuators B: Chem., 2019, 282, 408-416.
- 17 L.S. Zhou, F.P. Shen, X.K. Tian, D.H. Wang, T. Zhang, W. Chen, Nanoscale, 2013, 5, 1564-1569.
- 18 H. Meng, W. Yang, K. Ding, L. Feng, Y. J. Guan, J. Mater. Chem. A, 2015, 3, 1174-1181.