Supporting Information

Investigation of electronic and vibrational properties of Dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate under high pressure conditions

Junyu Fan, Yan Su,* and Jijun Zhao

Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian, 116024, China

^{*} Corresponding author. E-mail: su.yan@dlut.edu.cn

1. Raman spectra at hydrostatic conditions

The Raman characteristics under hydrostatic pressure have been well studied by Dreger and his colleagues.^{S1} The results of hydrostatic Raman spectra in this work are consistent with the observation in previous experiments and calculations.^{S1}

Detailed comparisons of the selected Raman shift between calculated and experimental results are presented in Figure S4. Pressure dependence of Raman spectra under hydrostatic compressions is shown in Figure 5a. The high-wavenumber modes $(v_1 - v_4)$, associated with cation moieties are predicted at 2650-3200 cm⁻¹. The NH_2 asymmetric stretching (v_1) presents a red shift before 3 GPa, then the red shift reverts gradually to a blue shift. This fact manifests the lengthening of N₁-H₂ covalent bond at first and starts to shorten the N1-H2 bond due to the compression of space after 3 GPa (see section 3.1 and Figure S5). The red shift is also observed in NH_2 symmetric stretch (v_2) due to the slight lengthening of the N_1 - H_1 covalent bonds with increasing pressure. Similarly, the mode mixed NH and OH character (v_4) presents a red shift, while the wavenumber of v_3 mode (NH and OH symmetrical stretching) is gradually increasing under higher pressure. From the vibrational pattern of TKX-50, we noted that the N_1 -H₃ bond participates in v_3 vibrational mode with the relatively strong contribution while the O_1-H_4 bond mainly participates in v_4 vibrational mode. Thus, the blue shift of v_3 and red shift of v_4 are associated with the slight shortening of N₁-H₁ and lengthening of O₁-H₄ bonds at 0-10 GPa, respectively.

Examination of Table S2 shows that most vibrational modes of TKX-50 are combinations of both cation and anion vibrations at ambient condition. The Raman frequencies of these modes increase with elevated pressure in most case below 1600 cm⁻¹. The highest coefficient (8.13 cm⁻¹ GPa⁻¹) is observed for the low-frequency internal mode v_{29} , while the lattice modes have coefficients less than 2.99 cm⁻¹ GPa⁻¹. In our previous work,^{S2} the highest coefficient of lattice modes for RDX is up to 9.0 cm⁻¹ GPa⁻¹, which indicate TKX-50 may have stronger intermolecular interactions than the typical nitro explosive like RDX.

Mode	Wavenumber /cm ⁻¹		Assignment			dv/dp /cm ⁻¹ GPa ⁻¹	
-	Expt. ^{S1}	This work	sym.	(NH ₃ OH) ⁺	$(C_2N_8O_2)^{2-}$	This work	Expt. ^{S1}
v_1	3216	3186	Ag	NH ₂ asym st		-0.70	-2.05
		3197	$\mathbf{B}_{\mathbf{g}}$				
v_2	3170	3120	Ag	NH ₂ sym st		-5.96	-0.86
		3132	\mathbf{B}_{g}				
<i>v</i> ₃	2931	2897	Ag	NH sym st +		6.94	4.21
		2898	\mathbf{B}_{g}	OH sym st			
v_4		2652	Ag	NH sym st +		-8.09	
		2654	$\mathbf{B}_{\mathbf{g}}$	OH sym st			
<i>v</i> ₅	1650	1586	Ag	NH ₂ sci		5.02	6.76
		1592	B_{g}				
v_6	1615	1578	Ag	NH ₂ sci		1.69	6.04
		1579	B_{g}				
v_7	1592	1569	Ag	NH ₂ sci	C-C sym st	1.29	5.78
		1567	$\mathbf{B}_{\mathbf{g}}$				
v_8	1590	1550	Ag	NH_2 sci + NH		-2.20	-0.76
		1558	$\mathbf{B}_{\mathbf{g}}$	rock + OH rock			
v_9	1485	1504	Ag	NH_2 sci + NH		-2.19	3.47
		1516	$\mathbf{B}_{\mathbf{g}}$	rock + OH rock			
v_{10}	1467	1425	Ag	NH rock + OH	C-N sym st	4.72	2.03
		1431	$\mathbf{B}_{\mathbf{g}}$	rock			
v_{11}	1276	1250	Ag	NH rock + OH	(CN ₃) ₂ deformation	3.64	3.18
		1257	B_g	Took			
v_{12}	1239	1212	Ag	NH rock + OH		2.58	3.71
		1221	$\mathbf{B}_{\mathbf{g}}$	rock			
<i>v</i> ₁₃	1185	1202	Ag	NH rock + OH	$(N_3)_2$ sci	3.42	2.14
		1203	B_g	rock			
v_{14}	1171	1159	Ag	NH rock + OH		-0.94	1.33
		1167	\mathbf{B}_{g}	rock			
<i>v</i> ₁₅	1133	1094	Ag		$(N_3)_2$ sci	3.19	2.64
		1095	$\mathbf{B}_{\mathbf{g}}$				
v_{16}	1116	1067	Ag	NH rock + OH	$(N_3)_2$ sci	4.71	3.09
		1067	$\mathbf{B}_{\mathbf{g}}$	rock			
v_{17}	1016	1007	A_{g}	NO sym st +		4.62	4.75
		1010	$\mathbf{B}_{\mathbf{g}}$	NH ₃ OH bre			
v_{18}	1006	963	Ag		C-N sym st	2.45	2.17

Table S1. Characteristics of vibrational modes in TKX-50 crystal at ambient pressure. dv/dp is slope of pressure-induced Raman shift. Abbreviation: st: stretch, sci: scissor, bre: breathe, sym: symmetric, asym: asymmetric.

		965	B_{g}		+ N-N-N sci		
v_{19}		867	Ăg	OH rock		6.39	
		873	Bg				
v_{20}	761	755	Ag	OH wag	Ring	3.75	3.79
		755	$\mathbf{B}_{\mathbf{g}}$		deformation		
<i>v</i> ₂₁	742	714	Ag		Ring	0.02	0.29
		714	B _g		deformation + C-C rock		
<i>v</i> ₂₂	701	663	A_g		Ring	1.16	1.12
		664	\mathbf{B}_{g}		+ C-C rock		
<i>v</i> ₂₃	610	598	Ag	OH st	Ring rock	2.14	2.17
		598	B_g				
<i>v</i> ₂₄	433	431	Ag	NH ₃ rock + OH	Ring deformation	4.15	2.71
		427	$\mathbf{B}_{\mathbf{g}}$	TOOR			
v_{25}	407	404	A_g		Ring	3.17	3.01
		403	$\mathbf{B}_{\mathbf{g}}$		deformation		
v_{26}	333	350	A_{g}	NH ₃ rock		5.78	4.64
		347	$\mathbf{B}_{\mathbf{g}}$				
v_{27}	295	328	A_{g}	$NH_3 rock + OH$		5.61	7.90
		344	$\mathbf{B}_{\mathbf{g}}$	st			
<i>v</i> ₂₈		308	A_{g}	$NH_3 rock + OH$		6.56	
		303	$\mathbf{B}_{\mathbf{g}}$	st			
<i>v</i> ₂₉	256	278	A_{g}	NH_3 rock + OH	Ring	8.13	9.76
		262	$\mathbf{B}_{\mathbf{g}}$	st	deformation		
<i>v</i> ₃₀	220	229	A_{g}	NH ₃ st		5.58	7.31
		239	B_g				
<i>v</i> ₃₁	196	209	A_{g}	rotation	Ring	4.88	5.42
		215	$\mathbf{B}_{\mathbf{g}}$		deformation		
<i>v</i> ₃₂	139	146	A_{g}	rotation	Ring	7.12	6.78
		168	B_g		deformation		
<i>v</i> ₃₃	121	130	A_g	translation	Ring	4.75	7.46
		131	$\mathbf{B}_{\mathbf{g}}$		deformation		
<i>v</i> ₃₄	115	113	Ag	rotation	Ring	2.46	7.14
		125	$\mathbf{B}_{\mathbf{g}}$		deformation		
<i>v</i> ₃₅	103	103	Ag	translation	Ring	1.17	3.18
		117	B_{g}		deformation		
<i>v</i> ₃₆	58	62	Āg	rotation	rotation	2.99	2.54
		71	B.				

Figure S1. The electronic structure of TKX-50 at ambient condition.

Figure S2. The evolutions of band gap of five energetic materials under hydrostatic pressure. The least-squares fitting is used to examine slop of band gap.

Figure S3. The intensities of A_g and B_g symmetry of modes are compared at 0K.

Figure S4. Raman shifts of selected characteristic peaks under pressure. The dots and lines depict the Raman shifts of this work and experiment, respectively. The calculated frequencies at all pressures are shifted by the same amount so that the calculated values and the experimental values match at ambient pressure.

Figure S5. The pressure dependence of molecular bond lengths.

References

- S1 Z. A. Dreger, Y. Tao, B. B. Averkiev, Y. M. Gupta and T. M. Klapotke, J. Phys. Chem. B, 2015, 119, 6836-6847.
- S2 J. Fan, Y. Su, Z. Zheng, Q. Zhang and J. Zhao, J. Raman Spectrosc., 2019, **50**, 889-898.