Supporting Information

The Role of Vibronic Coupling in Maleimide: A Multi-Mode and Multi-State Quantum Dynamics Study

Andreas Lehr,[†] Sandra Gómez,[‡] Michael A. Parkes,[‡] and Graham A. Worth^{*, ‡}

[†] Technical University of Darmstadt, Eduard-Zintl-Institut, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany

[‡] University College London, Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, United Kingdom

Here we provide additional extensive information on the model Hamiltonian described in the manuscript and used for simulating absorption spectra and population transfer dynamics.

The number of electronic states to be considered is justified by calculating higher-lying singlet and triplet excited states as shown in Tab. S1. The EOM-CCSD/cc-pVDZ level of theory is compared to the EOM-CCSD/aug-cc-pVTZ level of theory, which has been employed along with the SA(11)-CASPT2(12,9)/cc-pVDZ to demonstate its applicability in the presented model Hamiltonian. ADC(3)/cc-pVDZ calculations, as another *ab initio* approach, are also listed for comparison. Fig. S1 shows the adiabatic potential energy surfaces along the normal modes ν_1 and ν_{18} . It is stressed that the inclusion of triplet states becomes crucial when simulating emission spectra. Singlet excited states above 7 eV are found to be energetically well separated from the first two excitation bands studied and seem to be based on complicated coupling between many excited states close in energy.

Fig. S2 shows all 24 normal modes together with their symmetries and the short-hand notation for the most dominant vibrations based on calculations at the CCSD/aug-cc-pVTZ level of theory being consistent with CCSD/cc-pVDZ results. Fig. S3 gives an overview of the adiabatic potential energy surfaces of all normal modes for the first five electronic states at the EOM-CCSD/cc-pVDZ level of theory which have been fitted in order to derive the model Hamiltonian.

A full list of on-diagonal linear intra-state coupling constants $\kappa_{\alpha}^{(i)}$, off-diagonal linear inter-state coupling constants $\lambda_{\alpha}^{(i,j)}$ as well as on-diagonal bilinear (quadratic) coupling constants $\gamma_{\alpha,\beta}^{(i)}$ ($\gamma_{\alpha,\alpha}^{(i)}$) can be found in Tab. S2, S3 and S4. Parameters concerning the diabatic quartic and Morse potential are displayed in Tab. S5 and S6. Furthermore, all parameters derived from this fitting procedure can also be seen from the MCTDH operator file showing the full structure of the Hamiltonian. The input file is given as well specifying the MCTDH parameters for the simulation of the second excitation band using the 6-mode model. Details on how to read this file can be found in the Quantics documentation.^{1,2}

Based on this 6-mode model containing the most important normal modes of a_1 symmetry, the suggested peak assignment for the experimental second excitation band is shown in Fig. S4.

Table S1. Experimental and *ab initio* vertical singlet and triplet excitation energies E and oscillator strength f for maleimide in C_{2v} symmetry. While the EOM-CCSD/cc-pVDZ level of theory is chosen for calculating the points on the adiabatic PESs in Fig. S1, the EOM-CCSD/aug-cc-pVTZ, ADC(3)/cc-pVDZ and SA(11)-CASPT2(12,9)/cc-pVDZ results are shown here for comparison. The first five electronic states, $S_0 - S_4$ shown in bold letters, are considered in the presented model Hamiltonian.

		EOM-CCSD/ cc-pVDZ		EOM-C aug-cc-j	EOM-CCSD/ aug-cc-pVTZ		ADC(3)/ cc-pVDZ		SA(11)- CASPT2(12,9)/ cc-pVDZ		Experiment	
state	sym	E/eV	f	E /eV	f	E /eV	f	E /eV	f		E /eV	
S ₀	$1 {}^{1}A_{1}$	0.00		0.00		0.00		0.00				
$\mathbf{S_1}$	$1 {}^{1}B_{1}$	4.06	0.000	4.14	0.000	3.81	0.000	3.37	0.001		$3.33^{\ b}$	
\mathbf{S}_{2}	$1 {}^{1}A_2$	4.84	-	4.90	-	4.44	_	3.96	_			
\mathbf{S}_{3}	$1 {}^{1}B_{2}$	5.22	0.093	5.23	0.027	4.70	0.045	4.62	0.026	$4.72 \ ^{a}$	$4.48^{\ b}$ $4.67^{\ c}$	
\mathbf{S}_{4}	$2{}^1\!B_2$	6.68	0.432	6.55	0.450	6.11	0.503	5.80	0.456	${\sim}5.95~^a$	${\sim}6.20^{b,c}$	
S_5	$1 {}^{1}B_{1}$	8.11	0.002	8.12	0.003	6.39	0.004					
S_6	$2 {}^{1}\!A_{2}$	8.14	-	8.15	-	6.92	-	6.96	-			
S_7	$2 {}^{1}\!A_{1}$	8.85	0.034	8.93	0.038	7.24	0.029	7.31	0.016			
S_8	$3 {}^{1}\!B_{1}$	8.89	0.006	8.84	0.001	7.28	0.000	7.32	0.000			
S_9	$4 {}^{1}B_{1}$	9.04	0.001	8.89	0.000	7.79	0.001	8.07	0.000			
S_{10}	$3 {}^1\!B_2$	9.23	0.012	8.96	0.019	7.71	0.028					
T_1	$1 {}^{3}B_{2}$	3.70	-	3.77	-	3.32	-					
T_2	$1 {}^{3}B_{1}$	3.75	-	3.84	-	3.61	-					
T_3	$2 {}^{3}B_{2}$	4.35	—	4.45	_	3.83	-					
T_4	$1 {}^{3}A_{2}$	4.51	—	4.60	_	4.32	-					
T_5	$1 {}^{3}\!A_{1}$	6.47	-	6.54	-	5.97	-					

 $^{\rm a}$ $\,$ our vapour phase results at $315\,{\rm K}$

 $^{\rm b}$ – Seliskar et~al.: maleimide in EPA mixed solvent at $77\,{\rm K}^{\,3}$

^c Seliskar *et al.*: maleimide in 3-methylpentane at 300 K³

Figure S1. Adiabatic single-point energies E for a larger set of excited singlet and triplet states shown relative to the ground state energy at the FC point $E_0(^1A_1)$ as a function of mass- and frequency-scaled normal mode coordinates Q of mode ν_1 (left) and ν_{18} (right). The EOM-CCSD/cc-pVDZ level of theory has been chosen for calculating a wider range of excited states. The symmetry labels refer to the FC point at C_{2v} symmetry. The dark grey states of symmetry 1^1A_1 , 1^1B_1 , 1^1A_2 , 1^1B_2 and 2^1B_2 are treated explicitly, whereas states higher in energy (light grey) and triplet states (light red) are excluded in the presented model Hamiltonian.

Figure S2. Overview of all normal modes ν , together with their point group symmetries and description of the most dominant molecular group partaking in the corresponding vibration. The results are based on CCSD/aug-cc-pVTZ frequency analyses. It is distinguished between stretching (ν), bending (δ) and out-of-plane vibrations (γ). The labels *sym* and *asym* define the retained and broken symmetry with respect to the σ_v mirror plane perpendicular to the molecular plane.

Figure S3. Adiabatic single-point energies E (dots) of maleimide calculated at the EOM-CCSD/cc-pVDZ level of theory for first five electronic states shown relative to the ground state energy at the FC point $E_0(S_0)$ as a function of mass- and frequency-scaled normal mode coordinates Q of all normal modes ν . The adiabatic potential energy curves (solid lines) are obtained from the fitted vibronic coupling model for that particular normal mode. Both the single-point energies as well as the fitted curves have been shifted to the SA(11)-CASPT2(12,9)/cc-pVDZ excitation energies. The ground state S₀ is shown in black, S₁ in yellow, S₂ in green, S₃ in red and S₄ in blue with symmetry labels referring to maleimide in C_{2v} symmetry at the FC point.

Table S2. On-diagonal linear intra-state coupling constants $\kappa_{\alpha}^{(i)}$ determined by fitting the adiabatic PESs for all vibrational modes. Corresponding frequencies ω and single-point energies have been calculated at the (EOM-)CCSD/cc-pVDZ level of theory. The parameter highlighted in red has been altered to achieve a better correspondence with the experiment (cf. Tab. 5).

mode	ω/eV	$\kappa_{lpha}^{(i)}/\mathrm{eV}$					
		(1)	(2)	(3)	(4)		
ν_3	0.049	-0.044	0.020	-0.054	-0.006		
ν_7	0.080	-0.041	-0.065	-0.158	-0.078		
ν_{11}	0.114	0.069	0.089	0.127	0.064		
ν_{14}	0.133	-0.038	-0.037	-0.050	-0.086		
ν_{18}	0.172	0.187	0.083	0.352	0.109		
ν_{19}	0.206	0.049	0.130	0.169	0.229		
ν_{21}	0.237	0.229	0.359	0.100	0.279		
ν_{23}	0.408	-0.012	-0.014	-0.013	-0.027		
ν_{24}	0.458	-0.006	0.007	-0.044	-0.010		

Table S3. Off-diagonal linear inter-state coupling constants $\lambda_{\alpha}^{(i,j)}$ determined by fitting the adiabatic PESs for all vibrational modes. Corresponding frequencies ω and single-point energies have been calculated at the (EOM-)CCSD/cc-pVDZ level of theory. The parameter highlighted in red has been altered to achieve a better correspondence with the experiment (cf. Tab. 5).

mode	ω /eV					$\lambda_{lpha}^{(i,j)}$) / eV				
		(0,1)	(0, 2)	(0,3)	(0, 4)	(1, 2)	(1,3)	(1, 4)	(2,3)	(2, 4)	(3, 4)
$ u_1 $	0.014	-0.011							-0.131	-0.001	
ν_2	0.036		-0.011				0.055	-0.121			
ν_3	0.049										-0.061
ν_4	0.062	0.039							0.090	-0.076	
ν_5	0.067			0.001	-0.005	0.023					
$ u_6 $	0.079	-0.023							0.005	0.035	
ν_7	0.080										-0.089
ν_8	0.084			-0.011	0.017	0.028					
ν_9	0.097		0.012				0.110	0.138			
ν_{10}	0.105	-0.037							-0.010	-0.075	
ν_{11}	0.114										0.048
ν_{12}	0.115			-0.009	0.012	0.005					
ν_{13}	0.119		-0.034				0.040	0.164			
ν_{14}	0.133										-0.002
ν_{15}	0.145			0.013	0.003	0.042					
ν_{16}	0.167			-0.019	-0.006	-0.036					
ν_{17}	0.170			0.008	0.001	0.035					
ν_{18}	0.172										0.071
ν_{19}	0.206										-0.028
ν_{20}	0.232			0.047	-0.109	-0.172					
ν_{21}	0.237										-0.029
ν_{22}	0.405			-0.002	0.001	-0.013					
ν_{23}	0.408										0.010
ν_{24}	0.458										-0.087

Table S4. On-diagonal quadratic (top) and bilinear (bottom) intra-state coupling constants $\gamma_{\alpha,\alpha}^{(i)}$ and $\gamma_{\alpha,\beta}^{(i)}$ determined by fitting the adiabatic PESs for all vibrational modes. Corresponding frequencies and single-point energies have been calculated at the (EOM-)CCSD/cc-pVDZ level of theory. The parameter highlighted in red has been altered to achieve a better correspondence with the experiment (cf. Tab. 5).

modes		$\gamma_{\alpha,\alpha}^{(i)}$	/eV		modes		$\gamma_{\alpha,\alpha}^{(i)}$	/eV	
	(1)	(2)	(3)	(4)		(1)	(2)	(3)	(4)
$ u_1, u_1^{\dagger}$	0.004	-0.055	0.110	-0.001	$ u_{13}, u_{13}$	0.025	0.012	0.013	-0.034
$ u_2, u_2$	0.033	0.004	-0.020	-0.032	$ u_{14}, u_{14}$	0.020	0.018	0.021	0.022
$ u_3, u_3$	-0.014	-0.022	-0.003	-0.017	$ u_{15}, u_{15}$ -	0.005	-0.009	-0.010	-0.019
$ u_4$ $, { u_4}^\dagger$	0.042	0.030	0.089	0.065	ν_{16}, ν_{16} -	0.028	-0.015	-0.010	-0.009
$ u_5, u_5$	-0.011	-0.018	-0.005	-0.013	$ u_{17}, u_{17}$	0.013	0.013	0.001	0.004
$ u_6, u_6$	0.019	0.016	0.007	0.020	ν_{18}, ν_{18} -	0.049	-0.030	-0.046	-0.014
$ u_7, u_7$	-0.002	-0.010	0.020	-0.008	$\nu_{19}, {\nu_{19}}^{\dagger}$ -	0.010	-0.022	-0.010	-0.007
$ u_8$, $ u_8$	0.005	0.001	0.009	0.004	ν_{20}, ν_{20} -	0.016	0.004	-0.008	-0.040
$ u_9 , u_9$	-0.010	-0.047	-0.055	-0.079	$\nu_{21}, \nu_{21}^{\dagger}^{\dagger}$ -	0.049	-0.041	-0.035	-0.036
$ u_{10}, u_{10}$	-0.009	-0.004	0.004	-0.021	$ u_{22}, u_{22}^{\dagger}$ -	0.009	-0.014	-0.004	0.000
$ u_{11}, { u_{11}}^{\dagger}$	0.008	0.017	0.022	0.013	$ u_{23}, { u_{23}}^{\dagger}$	0.006	-0.018	-0.017	0.031
$ u_{12}, u_{12}$	-0.002	0.007	-0.009	0.011	$ u_{24}, u_{24}^{\ \dagger}$	0.079	0.081	0.109	-0.112
modes		$\gamma_{\alpha,\beta}^{(i)}$	$/\mathrm{eV}$		modes	$\gamma_{lpha,eta}^{(i)} /\mathrm{eV}$			
	(1)	(2)	(3)	(4)		(1)	(2)	(3)	(4)
ν_3, ν_{23}	-0.001	0.000	0.000	-0.001	ν_{19}, ν_{24} -	0.002	-0.002	-0.002	0.002
ν_3, ν_{24}	-0.001	0.002	0.002	0.002	ν_{21}, ν_{23} -	0.001	-0.001	-0.001	-0.001
$ u_7, u_{24}$	0.001	0.001	0.001	0.001	$ u_{21}, u_{24}$	0.000	0.001	0.001	0.001
$ u_{18}, u_{23}$	0.001	0.001	0.001	0.001	$ u_{23}, u_{24}$	0.003	0.003	0.003	0.003
$ u_{18}, u_{24}$	-0.001	-0.001	-0.001	-0.001					

[†] Corresponding parameters are replaced by higher order diabatic and Morse potentials (cf. Tab. S5 and S6).

modes Parameters					$/\mathrm{eV}$	
		(0)	(1)	(2)	(3)	(4)
ν_1	$\gamma^{(i)}_{lpha}$	0.009	0.004	0.003	0.027	-0.006
	$\epsilon_{lpha}^{(i)}$	0.030	0.027	0.026	0.028	0.026
$ u_4$	$\gamma^{(i)}_{\alpha}$	0.064	0.042	0.030	0.089	0.065
	$\epsilon_{lpha}^{(i)}$	0.160	0.163	0.194	0.122	0.129
ν_{22}	$\gamma_{lpha}^{(i)}$	-0.011	-0.009	-0.014	-0.004	0.000
_	$\epsilon_{\alpha}^{(i)}$	0.079	0.078	0.079	0.076	0.074

Table S5. Diabatic quartic potential parameters $\gamma_{\alpha}^{(i)}$ and $\epsilon_{\alpha}^{(i)}$ determined by fitting the adiabatic PESs for the vibrational modes ν_1 , ν_4 and ν_{22} . Corresponding frequencies and single-point energies have been calculated at the (EOM-)CCSD/cc-pVDZ level of theory.

Table S6. Morse potential parameters $D_{\alpha}^{(i)}$, $\alpha_{\alpha}^{(i)}$ and $Q_{0,\alpha}^{(i)}$ determined by fitting the adiabatic PESs for the vibrational modes ν_{11} , ν_{19} , ν_{21} , ν_{23} and ν_{24} . Corresponding frequencies and single-point energies have been calculated at the (EOM-)CCSD/cc-pVDZ level of theory.

modes			I	Paramete	rs	
		(0)	(1)	(2)	(3)	(4)
ν_{11}	$D_{\alpha}^{(i)}$ / eV	7.490	8.013	8.471	9.422	8.611
	$lpha_{lpha}^{(i)}$	0.087	0.088	0.088	0.085	0.086
	$Q_{0,lpha}^{(i)}$	-0.274	-0.880	-0.982	-1.393	-0.808
ν_{19}	$D_{\alpha}^{(i)}$ / eV	98.999	98.999	98.998	98.998	98.997
	$\alpha_{lpha}^{(i)}$	-0.032	-0.032	-0.030	-0.031	-0.031
	$Q_{0,lpha}^{(i)}$	-0.374	-0.603	-1.035	-1.144	-1.439
ν_{21}	$D_{\alpha}^{(i)}$ / eV	98.999	98.998	98.997	99.000	98.998
	$\alpha^{(i)}_{lpha}$	-0.034	-0.030	-0.031	-0.031	-0.031
	$Q_{0,lpha}^{(i)}$	-0.150	-1.283	-1.819	-0.653	-1.430
ν_{23}	$D_{\alpha}^{(i)}$ / eV	8.847	8.927	7.017	7.017	10.631
	$\alpha^{(i)}_{lpha}$	-0.152	-0.152	-0.166	-0.166	-0.144
	$Q_{0,lpha}^{(i)}$	0.040	0.069	0.090	0.090	0.099
ν_{24}	$D_{\alpha}^{(i)}$ / eV	4.098	4.894	4.937	5.390	4.959
	$lpha_{lpha}^{(i)}$	0.277	0.232	0.233	0.229	0.186
	$Q_{0,lpha}^{(i)}$	-0.534	-0.089	-0.231	-0.152	0.294

Figure S4. Experimental absorption spectra for the second excitation band of maleimide represented by the absorption cross section σ as a function of the photon energy $\hbar\omega$. The spectrum is shown for our vapour phase result at 315 K. A suggestion for the peak assignment of the most important vibronic excitations is given based on investigating the simulation results by employing the 6-mode model. The notation reads the a_1 vibrational mode followed by the excitation from the electronic and vibrational ground state (subscript) to the excited vibratrational state of the 2^1B_2 electronic state (superscript). All peaks are assigned relative to the 0-0 transition.

#					
# Male #	eimide VCI	lam			
BUNSE	CTION				
nan	$r_{\rm pe} = from S$	3			
pro	pagate				
tfi	nal = 200	tout = 0	.5 tpsi=	5.0	
out	put gridp	op=el p	si auto=	twice	
END-RU	N-SECTION				
OPERAT	OR-SECTIO	N			
opn	ame = ma	leimide			
END-OP	ERATOR-SEC	CTION			
SPF-BA	SIS-SECTIC)N			
mu 7	lti-set	0 05 20	E		
v7,	$v_{10} = 2$ $v_{11} = 2$, 2, 30, 32 0, 25, 20	,0 5		
v1, v4	$v_{11} - 2$ $v_{10} - 2$	2,35,32	,0		
END-SP	F-BASIS-SE	CTION	, 1		
PRIMIT	IVE-BASIS	-SECTION			
e l	e l	5			
v 1	HO	16	0.00	1.00	1.0
v2	HO	11	0.00	1.00	1.0
v 3	HO	21	0.00	1.00	1.0
v 4	HO	16	0.00	1.00	1.0
v 5	HO	11	0.00	1.00	1.0
v6	HO	11	0.00	1.00	1.0
v7	HO	21	0.00	1.00	1.0
v 8	HO	11	0.00	1.00	1.0
v9 v10	НО	21 10	0.00	1.00	1.0
v10	HO	16	0.00	1.00	1.0
v12	HO	11	0.00	1.00	1.0
v 1 3	HO	11	0.00	1.00	1.0
v14	НО	11	0.00	1.00	1.0
v15	НО	11	0.00	1.00	1.0
v 1 6	HO	11	0.00	1.00	1.0
v17	HO	11	0.00	1.00	1.0
v18	HO	31	0.00	1.00	1.0
v19	HO	16	0.00	1.00	1.0
v 2 0	HO	11	0.00	1.00	1.0
v21	HO	16	0.00	1.00	1.0
v 2 2	HO	11	0.00	1.00	1.0
v∠o v24	НО	11	0.00	1.00	1.0
end-pr	imitive-b	asis-sect	ion	1,00	1.0
ond pi					
INIT W	F-SECTION				
b u	ld				
ini	t_state =	= 4			
v 1	HO	0.00	0.00	1.00	1.0
v 2	НО	0.00	0.00	1.00	1.0
v 3	HO	0.00	0.00	1.00	1.0
v 4	НО	0.00	0.00	1.00	1.0
v5	HO	0.00	0.00	1.00	1.0
v 6	НО	0.00	0.00	1.00	1.0
w7	HO	0 0 0	0 0 0	1 0 0	1 0

61	v 8	HO	0.00	0.00	1.00	1.00
62	v 9	HO	0.00	0.00	1.00	1.00
63	v10	HO	0.00	0.00	1.00	1.00
64	v11	HO	0.00	0.00	1.00	1.00
65	v12	HO	0.00	0.00	1.00	1.00
66	v13	HO	0.00	0.00	1.00	1.00
67	v14	HO	0.00	0.00	1.00	1.00
68	v15	HO	0.00	0.00	1.00	1.00
69	v16	HO	0.00	0.00	1.00	1.00
70	v17	HO	0.00	0.00	1.00	1.00
71	v 1 8	HO	0.00	0.00	1.00	1.00
72	v 1 9	HO	0.00	0.00	1.00	1.00
73	v 2 0	HO	0.00	0.00	1.00	1.00
74	v 2 1	HO	0.00	0.00	1.00	1.00
75	v 2 2	HO	0.00	0.00	1.00	1.00
76	v 2 3	НО	0.00	0.00	1.00	1.00
77	v 2 4	НО	0.00	0.00	1.00	1.00
78	end-b	uild				
79	END-INIT	WF-SEC	TION			

80

81 END-INPUT

```
OP DEFINE-SECTION
 1
\mathbf{2}
    TITLE
3
     Maleimide VCHam model.
      \mbox{Energies SA(11)-CASPT2(12,9)/cc-pVDZ} \quad \mbox{Other parameters} \quad \mbox{EOM-CCSD/cc-pVDZ}. 
 4
5
    END-TITLE
 6
    END-OP DEFINE-SECTION
7
8
    PARAMETER-SECTION
9
10
    \#Frequencies
11
12
    omega 1
                   =
                        0.01401 , ev
13
    omega 2
                        0.03583 , ev
                   _
                        0.04917 , ev
14
    omega_3
                   =
15
    omega 4
                        0.06180 , ev
                   =
16
                        0.06709 , ev
    omega 5
                   =
                        0.07921 , ev
17
    omega_6
                   =
                        0.07960 , ev
18
    omega_7
                  =
19
    omega_8
                  =
                        0.08424 , ev
20
    omega 9
                        0.09654 , ev
                  =
21
    omega 10
                  =
                        0.10525 , ev
                        0.11441 , ev
    omega 11
                   =
22
                   =
                        0.11549 , ev
23
    omega 12
24
    omega 13
                    =
                        0.11886 , ev
25
    omega 14
                    =
                        0.13270 , ev
                        0.14491 , ev
26
    omega_15
                   =
27
                        0.16680 , ev
    omega_16
                  =
28
    omega_17
                  = 0.16951 , ev
29
    omega 18
                        0.17204 , ev
                  =
                        0.20630 , ev
30
    omega 19
                  =
    omega_20
                  =
31
                        0.23199 , ev
                  =
32
    omega_21
                        0.23661 , ev
                   =
33
    omega_22
                        0.40491 , ev
34
    omega 23
                   =
                        0.40773 , ev
35
    omega 24
                   =
                        0.45788 , ev
36
37
    \#Energies
38
39
    E1
                        0.00000 , ev
                    =
40
    E2
                   =
                        3.37000 , ev
                        3.96000 , ev
                   =
41
    E3
                        4.62000 , ev
42
    E4
                    =
43
    E5
                    =
                        5.80000 , ev
44
45
    #On-Diagonal Linear Coupling Constants (Kappa)
46
47
     kappa2 3
                  = -0.04397, ev
48
     kappa2 7
                  = -0.04125 , ev
49
     kappa2 11
                  = 0.06880 , ev
    kappa2_14
50
                  = -0.03806 , ev
    kappa2_18
51
                  = 0.18713 , ev
    kappa2_19
kappa2_19
kappa2_21
kappa2_23
                   = 0.04920 , ev
52
53
                       0.22930 , ev
                   =
                  = -0.01190 , ev
54
                  = -0.00570 , ev
    kappa2_24
55
56
    kappa3_3
                  = 0.02012 , ev
57
    kappa3 7
                  = -0.06468 , ev
               = 0.08920 , ev \\ = -0.03719 , ev
58
    kappa3 11
59
    kappa3 14
60
    kappa3_18
               = 0.08324 , ev
```

```
61
      kappa3 19
                           0.13040 , ev
                      =
62
      kappa3 21
                      =
                           0.35950 , ev
63
      kappa3 23
                         -0.01350 , ev
                      =
      kappa3 24
64
                      =
                           0.00720 , ev
65
      kappa4_3
                         -0.05391 , ev
                      =
      kappa4 7
                         -0.15750 , ev
66
                      =
67
      kappa4_11
                      =
                           0.12700 , ev
68
      kappa4_14
                      = -0.05000 \ , \ ev
69
      kappa4_{18}
                           0.35229 , ev
                      =
70
      kappa4 19
                           0.16880 , ev
                      =
      kappa4 21
                           0.10010 , ev
71
                      =
72
      kappa4 23
                      = -0.01330 , ev
      kappa4 24
                      = -0.04360 , ev
73
      kappa5_3
                         -0.00597 , ev
74
                      =
75
      kappa5 7
                         -0.10000 , ev
                      =
76
      kappa5_11
                      =
                           0.06450 , ev
77
      kappa5_14
                      =
                         -0.08558 , ev
78
      kappa5_18
                           0.10946 , ev
                      =
79
      kappa5_19
                      =
                           0.22870 , ev
      kappa5 21
                           0.27890 , ev
80
                      =
81
      kappa5_23
                      = -0.02710 \ , \ ev
82
      kappa5 24
                      = -0.01010 , ev
83
84
      #Off-Diagonal Linear Coupling Constants (Lambda)
85
86
      lambda1 2 1
                         -0.01111 , ev
                      =
87
      \texttt{lambda1}\_2\_4
                           0.03901 , ev
                      =
                         -0.02279 , ev
      lambda1_2_6
88
                      =
89
      lambdal 2 10
                         -0.03680 , ev
                      =
      lambdal 3 2
90
                      = -0.011111 , ev
                      = -0.13100 \ , \ ev
91
      lambdal 3 4
92
      lambda1_3_9
                           0.01203 , ev
                      =
      lambda1_3_13
93
                         -0.03389 , ev
                      =
94
      lambdal 4 5
                      =
                           0.00080 , ev
95
      lambdal 4 8
                         -0.01106 , ev
                      =
                      = -0.00873 \ , \ ev
96
      lambda1_4_12
97
      lambda1_4_{15}
                      =
                           0.01329 , ev
98
      lambdal 4 16
                      = -0.01881 , ev
      lambdal 4 17
99
                      =
                           0.00791 , ev
100
      lambdal 4 20
                           0.04713 , ev
                      =
      lambda1_4_22
                      = -0.00181 , ev
101
      lambda1_5_5
                         -0.00520 , ev
102
                      =
103
      lambda1 5 8
                      =
                           0.01673 , ev
104
      lambda1_5_{12}
                      =
                           0.01221 , ev
      lambda1_5_{15}
105
                           0.00287 , ev
                      =
      lambda1_5_16
106
                         -0.00610 , ev
                      =
107
      lambdal 5 17
                           0.00119 , ev
                      =
      lambda1 5 20
                         -0.10908 , ev
108
                      =
109
      lambda1 5 22
                           0.00131 , ev
                      =
                           0.02252 , ev
      lambda2 3 5
110
                      =
      lambda2 3 8
                           0.02779 , ev
111
                      =
112
      lambda2 3 12
                           0.00515 , ev
                      =
      lambda2_3_{15}
113
                           0.04166 , ev
                      =
      lambda2_3_{16}
114
                         -0.03613 , ev
                      =
      lambda2_3_17
115
                      =
                           0.03490 , ev
116
      lambda2_3_20
                      =
                         -0.17187 , ev
117
      lambda2 3 22
                      =
                         -0.01259 , ev
118
      lambda2 4 2
                           0.05457 , ev
                      =
119
      lambda2 4 9
                           0.11012 , ev
                      =
      lambda2 4 13
120
                           0.04018 , ev
                      =
```

```
121
      lambda2 5 2
                         -0.12086 , ev
                      =
122
      lambda2 5 9
                      =
                           0.13761 , ev
123
      lambda2 5 13
                           0.16415 , ev
                      =
      lambda3 4 4
                           0.08981 , ev
124
                      =
125
      lambda3 4 6
                           0.00490 , ev
                      =
126
      lambda3 4 10
                         -0.00962 , ev
                      =
      lambda3_5_1
127
                      =
                         -0.00051 , ev
      lambda3_5_4
128
                      = -0.07613 \ , \ ev
      lambda3_5_6
129
                          0.03467 , ev
                      =
130
      lambda3 5 10
                      = -0.07513 , ev
      lambda4 5 3
                      = -0.10000 , ev
131
132
      lambda4 5 7
                      = -0.08929 , ev
      lambda4 5 11
                           0.04827 , ev
133
                      =
      lambda4 5 14
                      = -0.00241 , ev
134
135
      lambda4 5 18
                           0.07127 , ev
                      =
      lambda4_5_{19}
136
                      =
                         -0.02844 , ev
                         -0.02934 , ev
      lambda4_5_{21}
137
                      =
                           0.00950 , ev
138
      lambda4_5_23
                      =
139
      lambda4_5_24
                         -0.08733 , ev
                      =
140
141
      #On-Diagonal Bilinear Coupling Constants (Gamma)
142
143
      gamma2 2 2
                           0.03292 , ev
                      =
144
      gamma2 3 3
                      =
                         -0.01433 , ev
145
      gamma2 3 23
                      =
                         -0.00050 , ev
146
      gamma2 3 24
                           0.00140 , ev
                      =
147
      gamma2_5_5
                      = -0.01096 \ , \ ev
      gamma2 6 6
148
                      =
                          0.01850 , ev
      gamma2 7 7
                      = -0.00239 , ev
149
                      = -0.00020 , ev
150
      gamma2 7 23
151
      gamma2 7 24
                      =
                           0.00050 , ev
152
      gamma2_8_8
                           0.00472 , ev
                      =
                         -0.00979 , ev
153
      gamma2_9_9
                      =
154
      gamma2 10 10
                         -0.00934 , ev
                      =
155
      gamma2 12 12
                         -0.00175 , ev
                      =
156
      gamma2_13_13
                           0.02519 , ev
                      =
157
      gamma2_{14}_{14}
                      =
                           0.02017 , ev
158
      gamma2 15 15
                      = -0.00516 , ev
      gamma2 16 16
159
                      = -0.02775 , ev
160
      gamma2 17 17
                           0.01250 , ev
                      =
      gamma2_18_18
                      = -0.04933 , ev
161
      gamma2 18 19
                         -0.00010 , ev
162
                      =
      gamma2 18 23
163
                      =
                           0.00050 , ev
164
      gamma2\_18\_24
                      =
                         -0.00080 , ev
      gamma2_19_23
165
                         -0.00010 , ev
                      =
      gamma2_19_24
166
                      = -0.00180 \ , \ ev
167
      gamma2 20 20
                      = -0.01565 , ev
      gamma2 21 23
                      = -0.00090 , ev
168
169
      gamma2 21 24
                           0.00040 , ev
                      =
      gamma2 23 23
                           0.12380 , ev
170
                      =
      gamma2 23 24
                           0.00250 , ev
171
                      =
      gamma2 24 24
172
                      =
                           0.37860 , ev
      gamma3 2 2
173
                      =
                           0.00366 , ev
      gamma3_3_3
174
                         -\,0\,.\,0\,2\,1\,7\,9 \quad,\quad e\,v
                      =
      gamma3_3_23
175
                      =
                         -0.00050 , ev
176
      gamma3_3_24
                      =
                           0.00150 , ev
177
      gamma3 5 5
                      =
                         -0.01828 , ev
178
      gamma3 6 6
                           0.01583 , ev
                      =
179
                         -0.00976 , ev
      gamma3_7_7
                      =
                         -0.00020 , ev
180
      gamma3 7 23
                      =
```

181	$gamma3_7_24$	=	0.00050	, ev
182	$gamma3_8_8$	=	0.00058	, ev
183	$gamma3_9_9$	=	-0.04715	, ev
184	gamma3 10 10	=	-0.00375	, ev
185	gamma3 12 12	=	0.00657	, ev
186	gamma3 13 13	=	0.01187	, ev
187	gamma3 14 14	=	0.01815	, ev
188	gamma3 15 15	=	-0.00938	, ev
189	gamma3 16 16	=	-0.01457	, ev
190	gamma3 17 17	=	0.01265	, ev
191	gamma3 18 18	=	-0.03003	, ev
192	gamma3 18 23	_	0.00050	ev
102	gamma3 18 24	_	0.00080	, e.
194	gamma3 19 24	_	-0.00180	, ev
105	gamma3_20_24		0.00100	, ст
106	$gamma^2 20 20$	_	0.00397	, ev
190	gamma3_21_23	_	-0.00090	, ev
197	gamma5_21_24	=	0.00000	, ev
198	gammas_23_23	=	0.14090	, ev
199	gamma3_23_24	=	0.00250	, ev
200	gamma3_24_24	=	0.37960	, ev
201	gamma4_1_4	=	-0.00010	, ev
202	$gamma4_2_2$	=	-0.02038	, ev
203	$gamma4_3_3$	=	-0.00285	, ev
204	$gamma4_3_{23}$	=	-0.00040	, ev
205	$gamma4_3_24$	=	0.00160	, ev
206	$gamma4_5_5$	=	-0.00540	, ev
207	$gamma4_6_6$	=	0.00702	, ev
208	$gamma4_7_7$	=	0.02001	, ev
209	$gamma4_7_21$	=	0.00010	, ev
210	gamma4_7_23	=	-0.00030	, ev
211	gamma4_7_24	=	0.00080	, ev
212	gamma4 8 8	=	0.00868	, ev
213	gamma4 9 9	=	-0.05547	, ev
214	gamma4 10 10	=	0.00350	, ev
215	gamma4 12 12	=	-0.00889	, ev
216	gamma4 13 13	=	0.01293	, ev
217	gamma4 14 14	=	0.02123	. ev
218	gamma4 15 15	=	-0.00973	, ev
219	gamma4_16_16	_	-0.00976	, ev
210	gamma4 17 17	_	0 00067	, ev
220	gamma4_17_17	_	0.00001	, CV
221	gamma4_18_21	_	0.00020	, cv
222	gamma4 18 23	_	0.00050	, ev
220	gamma4_18_24	_	0.00000	, ev
224	gamma4_16_24	=	-0.00090	, ev
225	gamma4_19_21	=	0.00020	, ev
226	gamma4_19_23	=	0.00030	, ev
227	gamma4_19_24	=	-0.00190	, ev
228	gamma4_20_20	=	-0.00813	, ev
229	gamma4_21_23	=	-0.00090	, ev
230	gamma4_21_24	=	0.00050	, ev
231	gamma4_23_23	=	0.18860	, ev
232	$gamma4_{23}_{24}$	=	0.00250	, ev
233	$gamma4_24_24$	=	0.41440	, ev
234	$gamma5_2^2$	=	-0.03203	, ev
235	$gamma5_3_3$	=	-0.01742	, ev
236	$gamma5_3_{21}$	=	0.00010	, ev
237	$gamma5_3_{23}$	=	-0.00050	, ev
238	$gamma5_3_24$	=	0.00160	, ev
239	$gamma5_5_5$	=	-0.01297	, ev
240	$gamma5_6_6$	=	0.02032	, ev

```
241
      gamma5 7 7
                       = -0.00827 , ev
242
                            0.00020 , ev
      gamma5 7 19
                       =
243
      gamma5\_7\_23
                       = -0.00030 , ev
      gamma5 7 24
                            0.00070 , ev
244
                       =
245
      gamma5_8_8
                       =
                            0.00365 , ev
246
      gamma5 9 9
                          -0.07860 , ev
                       =
247
      gamma5\_10\_10
                       =
                          -0.02081 , ev
      gamma5\_12\_12
248
                       = -0.01105 \ , \ ev
      gamma5\_13\_13
                       = -0.03406 \ , \ ev
249
250
      gamma5 14 14
                            0.02246 , ev
                       =
251
      gamma5 15 15
                       = -0.01948 , ev
252
      gamma5 16 16
                       = -0.00925 , ev
253
      gamma5 17 17
                            0.00384 , ev
                       =
254
      gamma5_18_18
                          -0.02000 , ev
                       =
255
      gamma5 18 19
                          -0.00010 , ev
                       =
256
      gamma5 18 21
                       =
                          -0.00020 , ev
                           0.00050 , ev
257
      gamma5_18_23
                       =
      gamma5_18_24
                      = -0.00090 , ev
258
259
      gamma5_19_23
                      = -0.00010 , ev
260
      gamma5 19 24
                       = -0.00180 \ , \ ev
      gamma5 20 20
261
                       = -0.03978 , ev
      gamma5 21 23
                       = -0.00100 , ev
262
      gamma5 21 24
263
                            0.00060 , ev
                       =
      gamma5 23 23
264
                       =
                            0.14800 , ev
265
      gamma5 23 24
                       =
                            0.00260 , ev
266
      gamma5\_24\_24
                            0.32680 , ev
                       =
267
268
      # Diabatic Curves with Parameters
269
      1EPm1
                        0.02953750 , ev
270
                  =
271
      1GAm1
                  =
                        0.00932715 , ev
272
      2EPm1
                        0\,.\,0\,2\,6\,6\,9\,4\,4\,2 \quad, \quad e\,v
                  =
      2GAm1
273
                        0.00424668 , ev
                  =
274
      3EPm1
                        0.02580022 , ev
                  =
                        0.00303797, ev
275
      3GAm1
                  =
276
      4EPm1
                        0.02777598 , ev
                  =
277
      4GAm1
                  =
                        0.02667294 , ev
278
      5EPm1
                        0.02646936 , ev
                  =
279
      5GAm1
                  =
                       -0.00568607 , ev
280
      1EPm4
                        0.16044840 , ev
                  =
281
                        0.06389122 , ev
      1GAm4
                  =
282
      2EPm4
                   =
                        0.16335388 , ev
283
      2GAm4
                  =
                        0.04196290 , ev
284
      3EPm4
                  =
                        0.19406492 , ev
                        0.02985938 , ev
285
      3GAm4
                  =
286
      4EPm4
                        0.12221038 , ev
                  =
287
      4GAm4
                        0.08889845 , ev
                  =
288
      5EPm4
                        0.12922395 , ev
                  =
289
      5GAm4
                        0.06460660 , ev
                  =
      1D 11
290
                        7.49022084 , ev
                  =
291
      1A 11
                        0\,.\,0\,8\,7\,4\,0\,2\,0\,1
                  =
292
      1X 11
                  =
                       -\,0\,.\,2\,7\,4\,0\,3\,8\,5\,3
293
      1E 11
                  =
                        0.00000000
                        8.01298486 , ev
294
      2D_{11}
                  =
      2\,\mathrm{A}\_11
295
                  =
                        0.08749234
      2 X_{11}
296
                  =
                       -0.87974735
297
      2E \ 11
                  =
                        0.00000000
298
      3D 11
                        8.47057780
                  =
                                     , ev
299
      3A 11
                        0.08788952
                  =
300
      3X 11
                       -0.98169116
                  =
```

9.0.1	0.17 1.1		0 00000000		
301	3E_11	=	0.000000000		
302	$4D_{11}$	=	9.42188428	,	ev
303	$4A_{11}$	=	0.08491312		
304	4X 11	=	-1.39264070		
305	4E 11	=	0.00000000		
306	5D 11	_	8 61069021		οv
207	5D_11 5A_11	_	0.00000021	,	CV
307	3A_11	=	0.08013312		
308	5X_11	=	-1.10000000		
309	$5E_{11}$	=	0.00000000		
310	$1D_{19}$	=	98.99896190	,	ev
311	1A_19	=	-0.03229799		
312	1X 19	=	-0.37352548		
313	1E 19	_	0 00000000		
314	2D 10	_	08 00804506		0.11
915	2D_19	_	0.02150201	,	CV
315	2A_19	=	-0.03150321		
316	$2X_{19}$	=	-0.60265617		
317	$2E_{19}$	=	0.00000000		
318	$3D_{19}$	=	98.99889264	,	ev
319	$3 A_{19}$	=	-0.03054705		
320	3X 19	=	-1.03500346		
321	3E 19	=	0.00000000		
322	4D 19	_	98 99894499		ev
322	1 <u>D</u> _10 1 A_19	_	0 03148955	,	0,
323	4A_15	_	-0.03140900		
324	4X_19	=	-1.14453090		
325	$4E_{19}$	=	0.00000000		
326	$5D_{19}$	=	98.99796281	,	ev
327	$5 A_{19}$	=	-0.03000000		
328	$5 X_{19}$	=	-1.43979206		
329	5 ± 19	=	0.00000000		
330	1D 21	=	98.99998223	,	ev
331	1A 21	=	-0.03393087		
332	1X 21	=	-0.14964156		
333	1E 21	_	0 00000000		
334	2D 21	_	98 99898909		οv
225	2D_21 0A_01	_	0.020800505	,	CV
330	2A_21	=	-0.03080050		
336	2X_21	=	-1.28335964		
337	$2E_21$	=	0.00000000		
338	$3D_{21}$	=	98.99798507	,	ev
339	$3A_{21}$	=	-0.03140394		
340	3X 21	=	-1.81955451		
341	$3\overline{\text{E}}$ 21	=	0.00000000		
342	4D 21	=	99.00099674		ev
343	4 A 21	=	-0.03189363	ć	
344	4X 21	_	0.65315449		
245	4E 91	_	-0.00010445		
340	4E_21	=	0.00000000		
346	$5D_{21}$	=	98.99898221	,	ev
347	$5A_{21}$	=	-0.03180336		
348	$5 X_{21}$	=	-1.20000000		
349	$5 \mathrm{E}_{21}$	=	0.00000000		
350	$1 \mathrm{EPm} 22$	=	0.07905662	,	ev
351	1GAm22	=	-0.01111726	,	ev
352	2EPm22	=	0.07849771		ev
353	2GAm22	=	-0.00914977		ev
354	3EPm22		0 07012041	,	ev
95F	2CAm22		0.01457404	,	ov
000	JGAIIZZ	_	-0.01457494	,	ev
356	4EPm22	=	0.07611320	,	ev
357	4GAm22	=	-0.00407954	,	ev
358	$5 \mathrm{EPm} 22$	=	0.07402383	,	ev
359	5GAm22	=	0.00036484	,	ev
360	$1D_{23}$	=	8.84700741	,	ev

361	$1A_{23} =$	-0.15210754
362	$1X_{23} =$	0.04040257
363	1E 23 =	0.00000000
364	2D 23 =	8.92723004 , ev
365	2A 23 =	-0.15227466
366	2X 23 =	0 06917546
367	2 <u>11_2</u> 0 2E_23 —	0 0000000
201	2E_23 —	7.01717040
308	$3D_{23} =$	7.01717240 , ev
369	$3A_{23} =$	-0.16660340
370	$3X_{23} =$	0.09089346
371	$3E_{23} =$	0.0000000
372	$4D_{23} =$	7.01783796 , ev
373	$4A_{23} =$	-0.16677994
374	$4X_{23} =$	0.09015606
375	4E 23 =	0.0000000
376	$5D_{23} =$	10.63103976 , ev
377	5 A 23 =	-0.14367132
378	5X 23 =	0 09923984
379	5E 23 -	0 0000000
200	1D 94	4.00820678
30U 201	$1D_{24} =$	4.09820078 , ev
381	$1A_24 =$	0.27737724
382	$1X_{24} =$	-0.53445499
383	$1E_{24} =$	0.00000000
384	$2D_{24} =$	4.89403508 , ev
385	$2A_{24} =$	0.23235153
386	$2X_{24} =$	-0.08894778
387	$2E_{24} =$	0.00000000
388	$3D_{24} =$	4.93739020 , ev
389	$3A_{24} =$	0.23351534
390	3X 24 =	-0.23151132
391	$3E^{24} =$	0.00000000
392	$4D^{24} =$	5.39001484 , ev
393	$4A^{24} =$	0.22928893
394	$4X^{24} =$	-0.15237473
395	$4E_{24} =$	0 0000000
396	5D 24 -	4 95930645 ev
307	$54_{24} -$	0 18665039
208	5X 24 -	0.20467427
200	5A_24 -	0.29407437
399	$3E_{24} =$	0.0000000
400		
401	end-parameter	section
402		
403	LABELS-SECTIO	N
404		
405	# Diabatic F	unction Labels
406		
407	v1m11=morse1	1D 11,1A 11,1X 11,1E 11]
408	v2m11=morse1	2D 11, $2A$ 11, $2X$ 11, $2E$ 11
409	v3m11=morse1	3D 11,3A 11,3X 11,3E 11]
410	v4m11=morse1	4D 11.4A 11.4X 11.4E 11]
411	v5m11=morse1	5D 11.5A 11 5X 11 5E 11
412	v1m19-morse1	1D 19 1A 19 1Y 10 1F 10
112 /12	v2m10-morse1	2D 10 2A 10 2V 10 2E 10
41J	v2m19=morsel	$2D_{19}, 2A_{19}, 2A_{19}, 2D_{19}$
414	v3m19=morsel	5D_19, 3A_19, 3X_19, 3E_19]
415	v4m19=morsel	4D_19,4A_19,4X_19,4E_19]
416	v5m19=morse1	5 D_19,5 A_19,5 X_19,5 E_19]
417	v1m21=morse1 [$1 D_{21}, 1 A_{21}, 1 X_{21}, 1 E_{21}$
418	v2m21=morse1 [$2 D_{21}, 2 A_{21}, 2 X_{21}, 2 E_{21}$
419	v3m21=morse1 [$3 D_{21}, 3 A_{21}, 3 X_{21}, 3 E_{21}$
420	v4m21=morse1 [$4D_21, 4A_21, 4X_21, 4E_21]$

```
v5m21=morse1 [5D 21,5A 21,5X 21,5E 21]
421
422
      v1m23=morse1[1D 23,1A 23,1X 23,1E 23]
423
      v2m23{=}morse1~[2D_{23}, 2A_{23}, 2X_{23}, 2E_{23}]
      v3m23=morse1 [3D 23,3A 23,3X 23,3E 23]
424
425
      v4m23 = morse1 [4D_{23}, 4A_{23}, 4X_{23}, 4E_{23}]
426
      v5m23=morse1[5D 23,5A 23,5X 23,5E 23]
427
      v1m24{=}morse1~[1\,D\_24, 1\,A\_24, 1\,X\_24, 1\,E\_24]
428
      v2m24 = morse1 [2D_{24}, 2A_{24}, 2X_{24}, 2E_{24}]
429
      v3m24 = morse1 [3D_{24}, 3A_{24}, 3X_{24}, 3E_{24}]
430
      v4m24=morse1 [4D 24,4A 24,4X 24,4E 24]
431
      v5m24 = morse1 [5D 24, 5A 24, 5X 24, 5E 24]
432
433
      end-labels-section
434
435
      HAMILTONIAN-SECTION
436
437
438
       modes v1
                     v 2
                             v 3
                                    v 4
                                           v 5
                                                   v 6
                                                          v7 v8 v9 v10
439
       modes v11
                    v 1 2
                            v13 v14 v15 v16 v17 v18 v19 v20
440
       modes v21 v22 v23
                                   v24 el
441
442
      # Kinetic Energy
443
444
445
      omega 1
                               1
                                       KE
446
      omega_2
                               |2|
                                       KE
                               3
                                       KE
447
      omega_3
448
                                       KE
      omega_4
                               4
449
      omega 5
                               5
                                       KE
450
      omega 6
                               6
                                       \mathbf{KE}
                               7
451
      omega_7
                                       KE
452
      omega_8
                               8
                                       KE
453
      omega_9
                               9
                                       \mathbf{KE}
454
       omega 10
                               |10
                                       KE
                                       KE
455
      omega_{11}
                               111
456
                               |12
                                       KE
      omega_{12}
                                       KE
457
      omega_{13}
                               |13
458
      omega 14
                               14
                                       KE
459
      omega 15
                               |15|
                                       KE
460
      omega 16
                               16
                                       KE
461
      omega_{17}
                               17
                                       KE
462
      omega_{18}
                               18
                                       \mathbf{KE}
463
      omega 19
                               |19|
                                       \mathbf{KE}
464
      {\rm omega}_{20}
                               |20|
                                       KE
465
      omega_{21}
                               |21|
                                       KE
466
                               |22
                                       KE
      omega_{22}
467
      omega 23
                               2.3
                                       KE
468
                               |24|
                                       KE
      omega 24
469
470
      # Potential for Harmonic Oscillator
471
472
       0.5*omega 1
                               1
                                        \mathbf{q}^2
473
       0.5*omega 2
                               |2|
                                       \mathbf{q}^2
       0.5*omega_3
474
                               3
                                       \mathbf{q}\,\widehat{}\,2
475
       0.5*omega_4
                               4
                                       \mathbf{q}^{\, 2}
476
       0.5* \text{omega}_5
                               5
                                       \mathbf{q}\,\hat{}\,2
477
       0.5*omega 6
                               6
                                       \mathbf{q}^2
478
       0.5*omega 7
                               7
                                       \mathbf{q}^2
479
                                       \mathbf{q}^2
       0.5* \text{omega} 8
                               8
480
       0.5*omega_9
                               9
                                       \mathbf{q}^2
```

481	$0.5* \mathrm{omega}_{10}$	10	\mathbf{q} ²		
482	0.5*omega 12	12	q ^2		
483	0.5*omega 13	13	a ^2		
484	0.5*omora 14	114	а^9		
405	0.5*0mcga_14	11 7	q 2		
400	0.5*Omega_15	110	q 2		
486	0.5*omega_16	16	\mathbf{q}^2		
487	$0.5* \mathrm{omega}_{17}$	17	\mathbf{q}^2		
488	$0.5* \mathrm{omega} 18$	18	\mathbf{q}^2		
489	$0.5* \mathrm{omega} 20$	20	\mathbf{q}^2		
490	0.5*omega 22	22	\mathbf{q}^2		
491	<u> </u>				
492	# Electronic States				
103	// 20000000000000000000000				
40.4	F 1			195	C 1 P-1
434	El			120	
495	E2			25	52&2
496	E3			2.5	S3&3
497	E4			2 5	S4&4
498	E5			2 5	S5&5
499					
500	# Lambda				
501					
502	lambda1 2 1	1	a	25	S1&2
503	lambda3 5 1	11	а О	25	S3&5
504	lambdal 2 2	1 0	4	120	S16-2
504	1 = 1 = 1 = 2	12	q	20 0r	51&5 C01-4
505	lambda2_4_2	2	q	20	52&4
506	lambda2_5_2	2	q	2.5	S2&5
507	$lambda4_5_3$	3	q	2 5	S4&5
508	lambda1_2_4	4	q	2 5	S1&2
509	$lambda3_4_4$	4	q	2 5	S3&4
510	$lambda3_4_1$	1	q	2.5	S3&4
511	lambda3 5 4	4	q	25	S3&5
512	lambda1 4 5	5	a	25	S1&4
513	lambdal 5 5	15	a	25	S1&5
514	lambda2 3 5	15	4 a	125	5263
514	lambda2_5_5		q	120	S2&5
515	lambdal_2_6	0	q	20	51&2
516	lambda3_4_6	6	q	2.5	\$3&4
517	$lambda3_5_6$	6	q	2 5	S3&5
518	lambda4_5_7	7	q	2 5	S4&5
519	$lambda1_4_8$	8	q	2 5	S1&4
520	$lambda1_5_8$	8	q	25	S1&5
521	lambda2 3 8	8	q	25	S2&3
522	lambda1 3 9	9	q	2 5	S1&3
523	$\begin{bmatrix} - & - \\ - & - \end{bmatrix}$	9	a	25	S2&4
524	lambda2 5 9	9	a	25	S2&5
525	lambda1 = 2 = 10	110	r a	125	S1&2
520	$\frac{1}{10}$		q	120	S162
520			q	20	53&4
527	lambda3_5_10	10	q	25	\$3&5
528	lambda4_5_11	11	q	25	S4&5
529	$lambda1_4_{12}$	12	q	25	S1&4
530	$lambda1_5_{12}$	12	q	2 5	S1&5
531	$lambda2_3_{12}$	12	q	25	S2&3
532	lambda1_3_13	13	q	2 5	S1&3
533	lambda2 4 13	13	q	25	S2&4
534	 lambda2 5 13	13	q	25	S2&5
535	lambda4 5 14	14	a	2.5	S4&5
536	lambda1 = 4 = 15	115	r a	25	S1874
000 597	$\frac{100001}{10001} = \frac{4}{10}$		ч	20	S1024 S10-5
əə (110	Ч	2.5	
538	lambda2_3_15	15	q	25	52&3
539	$lambda1_4_{16}$	16	q	25	S1&4
540	$lambda1_5_16$	16	q	25	S1&5

541	$lambda2_3_{16}$	16	q	25	S2&3
542	$lambda1_4_17$	17	q	2 5	S1&4
543	$lambda1_5_17$	17	q	2 5	S1&5
544	$lambda2_3_17$	17	q	25	S2&3
545	$lambda4_5_{18}$	18	q	2 5	S4&5
546	lambda4 5 19	19	q	25	S4&5
547	lambdal 4 20	20	q	25	S1&4
548	lambda1 5 20	20	q	25	S1&5
549	lambda2 3 20	20	q	25	S2&3
550	lambda4 5 21	21	q	25	S4&5
551	1 lambda = 4 22	22	q	2 5	S1&4
552	lambda1 5 22	22	q	25	S1&5
553	lambda2 3 22	22	q	25	S2&3
554	$\begin{bmatrix} -2 \\ -23 \end{bmatrix}$	23	q	25	S4&5
555	$\begin{bmatrix} - & - \\ - & 24 \end{bmatrix}$	24	a	25	S4&5
556		1		1	
557	# Kappa				
558	// 110pp 0				
559	kappa2 3	3	α	25	S2&2
560	kappa2_0	3	q	125	S34/3
561	kappad_3	3	q	125	S 1 & 1
562	kappa4_3	2	q	125	S101
563	kappa0_5	17	q	125	50&0 50 kro
564	kappa2_7	17	q	120	C 2 (- 2
565	kappa3_7	1	q	125	53&3 548-4
505	kappa4_7	(q	20 95	
500	kappab_1	(1 A	q	20 95	50&0 50%0
507	kappa2_14	14	q	20 05	
508	kappas_14	14	q	20 05	
569	kappa4_14	14	q	25	
570	kappa5_14	14	q	25	55&5
571	kappa2_18	18	q	25	S2&2
572	kappa3_18	18	q	25	\$3&3
573	kappa4_18	18	q	25	S4&4
574	kappa5_18	18	q	25	S5&5
575	<i>"</i> • • • • • •				
576	# On-Diagonal Gamma	Consta	nts		
577					
578	$0.5* \operatorname{gamma2}_2_2$	2	\mathbf{q}^2	2 5	S2&2
579	$0.5*$ gamma 3_2_2	2	\mathbf{q}^2	2 5	S3&3
580	$0.5*gamma4_2_2$	2	\mathbf{q}^2	25	S4&4
581	$0.5*gamma5_2_2$	2	\mathbf{q}^2	25	S5&5
582	$0.5* \text{gamma2}_3_3$	3	\mathbf{q}^2	25	S2&2
583	$0.5*$ gamma 3_3_3	3	\mathbf{q}^2	25	S3&3
584	$0.5*gamma4_3_3$	3	\mathbf{q}^2	25	S4&4
585	$0.5*gamma5_3_3$	3	\mathbf{q}^2	2 5	S5&5
586	$0.5* ext{gamma2}_5_5$	5	\mathbf{q}^2	2 5	S2&2
587	$0.5*$ gamma 3_5_5	5	\mathbf{q}^2	2 5	S3&3
588	$0.5*gamma4_5_5$	5	\mathbf{q}^2	2 5	S4&4
589	$0.5* ext{gamma5}_5 ext{5}$	5	\mathbf{q}^2	2 5	S5&5
590	$0.5*gamma2_6_6$	6	\mathbf{q}^2	2 5	S2&2
591	$0.5*gamma3_6_6$	6	\mathbf{q}^2	25	S3&3
592	$0.5*gamma4_6_6$	6	\mathbf{q}^2	25	S4&4
593	$0.5*gamma5_6_6$	6	\mathbf{q}^2	25	S5&5
594	$0.5*gamma2_7_7$	7	\mathbf{q} ²	2 5	S2&2
595	$0.5*gamma3_7_7$	7	\mathbf{q} ²	25	S3&3
596	$0.5*gamma4_7_7$	7	\mathbf{q}^2	2 5	S4&4
597	$0.5* gamma 5_7_7$	7	\mathbf{q}^2	2 5	S5&5
598	$0.5* gamma 2_8_8$	8	\mathbf{q}^2	25	S2&2
599	0.5*gamma3_8_8	8	\mathbf{q}^2	25	S3&3
600	$0.5*gamma4_8_8$	8	\mathbf{q}^2	25	S4&4

601	$0.5* ext{gamma5}_8$	8	\mathbf{q}^2			25	S5&5	
602	$0.5* ext{gamma2}9_9$	9	\mathbf{q}^2			$ 2\ 5$	S2&2	
603	$0.5* gamma3_9_9$	9	\mathbf{q}^2			25	S3&3	
604	0.5*gamma4 9 9	9	\mathbf{q}^2			25	S4&4	
605	0.5 * gamma5 9 9	9	\mathbf{q}^2			25	S5&5	
606	0.5*gamma2 10 10	10	q^2			25	S2&2	
607	0.5*gamma3 10 10	10	- q^2			25	S3&3	
608	0.5*gamma4 = 10 = 10	110	α^2			25	S4&4	
609	0.5*gamma5 = 10 = 10	110	ч- а^2			25	S5&5	
610	0.5 * gamma 2 12 12	112	ч - а^?			25	5020	
611	$0.5 * gamma^2 12 12$	112	ч ² а^?			25	5262	
619	0.5 * gamma 4 12 12	110	4 ²			25	S 1 8+1	
612	$0.5 * gamma = 12 _ 12$	110	ຊ_∠ ຕ^ົ			4 U 9 E	0104	
015	0.5 * gammas 12 12		q 2			20	50&0	
014	0.5*gamma2_15_15	110	q 2			20	5282	
615	0.5*gamma3_13_13	113	q 2			25	53&3	
616	0.5*gamma4_13_13	13	q ^2			25	S4&4	
617	0.5*gamma5_13_13	13	\mathbf{q}^2			2 5	S5&5	
618	0.5*gamma2_14_14	14	\mathbf{q}^2			25	S2&2	
619	$0.5*gamma3_14_14$	14	\mathbf{q}^2			2 5	S3&3	
620	$0.5*gamma4_14_14$	14	\mathbf{q}^2			2 5	S4&4	
621	$0.5*gamma5_{14}_{14}$	14	\mathbf{q}^2			2 5	S5&5	
622	$0.5*$ gamma 2_15_15	15	\mathbf{q}^2			25	S2&2	
623	$0.5*$ gamma 3_15_15	15	\mathbf{q}^2			25	S3&3	
624	$0.5*gamma4_15_15$	15	\mathbf{q}^2			25	S4&4	
625	$0.5*gamma5_{15}15$	15	\mathbf{q}^2			25	S5&5	
626	0.5*gamma2_16_16	1.6	\mathbf{q}^2			25	S2&2	
627	0.5*gamma3_16_16	1.6	\mathbf{q}^2			25	S3&3	
628	0.5*gamma4 16 16	16	\mathbf{q}^2			25	S4&4	
629	0.5*gamma5 16 16	16	\mathbf{q}^2			25	S5&5	
630	0.5*gamma2 17 17	17	q^2			25	S2&2	
631	0.5*gamma3 17 17	17	q ^2			25	S3&3	
632	0.5*gamma4 17 17	17	q ^2			25	S4&4	
633	0.5*gamma5_17_17	117	a^2			2.5	S5&5	
634	0.5 * gamma 2 18 18	118	α^2			25	S2&2	
635	$0.5*$ gamma2 _ 18 _ 18	118	а-2 а^2			25	S3&2	
636	0.5 * gamma 4 18 18	118	ч 2 а^?			25	S4&4	
637	0.5 * gamma 5 18 18	11.8	ч ²			25	S5825	
620	0.5 * gamma 2 20 20	120	Υ [∠]			125	5000	
620	$0.5 * \text{gamma2}_{20} 20$	120	Υ ∠ α^Ω			20 95	5262	
039	$0.5 * gammas _20 _20$	120	q 2			20	5383	
040	0.5*gamma4_20_20	20	q 2			20	54&4	
641	$0.5*gamma5_{20}20$	20	$\mathbf{q}^{n}2$			2.5	S5&5	
642	<i>"</i> 0 1 1 1 1 1							
643	# Off-Diagonal Gamm	na Cons	tants					
644								
645	gamma4_1_4	1	q	4	q	2 5	S4&4	
646	$gamma5_3_{21}$	3	q	21	q	2 5	S5&5	
647	$gamma2_3_{23}$	3	q	23	\mathbf{q}	2 5	S2&2	
648	$gamma3_3_{23}$	3	q	23	q	25	S3&3	
649	$gamma4_3_{23}$	3	q	23	\mathbf{q}	25	S4&4	
650	$gamma5_3_{23}$	3	q	23	q	2 5	S5&5	
651	gamma2_3_24	3	q	24	q	25	S2&2	
652	gamma3_3_24	3	q	24	q	2 5	S3&3	
653	gamma4 3 24	3	q	24	q	25	S4&4	
654	gamma5 3 24	3	q	24	q	25	S5&5	
655	gamma5 7 19	7	q	19	q	25	S5&5	
656	gamma4 7 21	7	q	21	a	25	S4&4	
657	gamma2 7 23	7	q	23	a	25	S2&2	
658	gamma3 7 23	7	a	23	a	25	S3&3	
659	gamma4 7 23	7	a	23	a	25	S4&4	
660	gamma5 7 23	7	a	23	n D	2.5	S5&5	
500	5	1.	ч	120	ч	20	00000	

661	$gamma2_7_24$	7	q	24	q	2.5	S2&2
662	$gamma3_7_24$	7	q	24	q	2.5	S3&3
663	$gamma4_7_24$	7	q	24	q	25	S4&4
664	gamma5_7_24	7	q	24	q	25	S5&5
665	gamma2 18 19	18	q	19	q	25	S2&2
666	gamma5 18 19	18	q	19	q	2 5	S5&5
667	gamma4 18 21	18	q	21	q	25	S4&4
668	gamma5 18 21	18	q	21	q	25	S5&5
669	gamma2 18 23	18	a	23	a	25	S2&2
670	gamma3 18 23	118	a	23	a	25	S3&3
671	gamma4 18 23	118	a	23	a	25	S4&4
672	gamma5 18 23	118	r D	23	n D	25	S5&5
673	gamma2 18 24	118	r a	24	e a	25	528/2
674	gamma2_10_21	118	ч a	24	ч а	25	S2&2 S3&3
675	gamma/_18_24	118	ч a	21	ч а	125	S4&4
676	gamma5_18_24	118	ч а	24	ч а	20 25	S5&5
677	$gamma4_{10}_{24}$		Ч	4 4 9 1	ч	20 95	51&5
679	gamma2 10 22		Ч	4 1 9 2	Ч	20 95	54&4 59kg
070	gamma2_19_23	119	q	20	q	20	5282
679	gamma4_19_23	19	q	23	q	25	54&4
680	gamma5_19_23	19	q	23	q	25	S5&5
681	gamma2_19_24	19	q	24	\mathbf{q}	25	\$2&2
682	gamma3_19_24	19	q	24	q	25	S3&3
683	gamma4_19_24	19	q	24	q	2 5	S4&4
684	$gamma5_{19}_{24}$	19	q	24	\mathbf{q}	25	S5&5
685	$gamma2_{21}_{23}$	21	q	23	q	25	S2&2
686	gamma3_21_23	21	q	23	q	2 5	S3&3
687	$gamma4_{21}_{23}$	21	q	23	q	2 5	S4&4
688	$gamma5_21_23$	21	q	23	\mathbf{q}	25	S5&5
689	$gamma2_{21}_{24}$	21	q	24	q	2.5	S2&2
690	$gamma3_{21}_{24}$	21	q	24	q	2.5	S3&3
691	$gamma4_{21}_{24}$	21	q	24	q	2.5	S4&4
692	$gamma5_{21}_{24}$	21	q	24	q	2.5	S5&5
693	gamma2_23_24	2 3	q	24	q	25	S2&2
694	gamma3_23_24	23	q	24	q	25	S3&3
695	gamma4_23_24	23	q	24	q	25	S4&4
696	gamma5 23 24	23	q	24	q	2 5	S5&5
697							
698	# Morse/Anti-Morse	Potent	i a l				
699							
700	1.0	11	v1m11			25	S1&1
701	1.0	11	v2m11			25	S2&2
702	1.0	111	v3m11			25	S3&3
703	1.0	111	v4m11			25	S4&4
704	1.0	111	v5m11			25	S5&5
705	1.0	19	v1m19			2.5	S1&1
706	1.0	19	v2m19			25	S2&2
707	1.0	119	v3m19			25	S2&2 S3&3
708	1.0	119	v4m19			25	S4&4
709	1.0	110	v5m19			125	S5&5
710	1.0	1 J 9 1	v1m21			125	S1 &1
710	1.0	21 91	v111121			20 95	51&1
710	1.0	21	$v_2 m_2 1$			25	5202
112	1.0	21	v 3 m2 1			20	5300
113	1.0	21	v4m21			20 95	0404 CER.E
(14	1.0	21	v5m21			25	55&5
715	1.0	23	v1m23			25	51&1
716	1.0	23	v2m23			25	S2&2
717	1.0	23	v3m23			25	\$3&3
718	1.0	23	v4m23			25	S4&4
719	1.0	23	v5m23			25	S5&5
720	1.0	24	v1m24			2 5	S1&1

721	1.0	24	v2m24	2 5	S2&2				
722	1.0	24	v3m24	2 5	S3&3				
723	1.0	24	v4m24	25	S4&4				
724	1.0	24	v5m24	25	S5&5				
725									
726	# Quartic Potential								
727									
728	0.041667*1 EPm1	1	\mathbf{q}^4	25	S1&1				
729	0.50000*1GAm1	1	\mathbf{q}^2	2 5	S1&1				
730	$0.041667*2 {\rm EPm1}$	1	\mathbf{q}^4	25	S2&2				
731	0.50000 * 2GAm1	1	\mathbf{q}^2	25	S2&2				
732	$0.041667*3 \mathrm{EPm1}$	1	\mathbf{q}^4	25	S3&3				
733	0.50000 * 3 GAm1	1	\mathbf{q}^2	25	S3&3				
734	0.041667*4EPm1	1	\mathbf{q}^4	25	S4&4				
735	0.50000 * 4GAm1	1	\mathbf{q}^2	25	S4&4				
736	0.041667*5 EPm1	1	\mathbf{q}^4	25	S5&5				
737	0.50000 * 5GAm1	1	\mathbf{q}^2	25	S5&5				
738	0.041667*1 EPm4	4	\mathbf{q}^4	25	S1&1				
739	0.50000 * 1GAm4	4	\mathbf{q}^2	25	S1&1				
740	0.041667*2 EPm4	4	q^{4}	25	S2&2				
741	0.50000 * 2 GAm4	4	\mathbf{q}^2	2 5	S2&2				
742	0.041667*3EPm4	4	q^{4}	25	S3&3				
743	0.5000*3GAm 4	4	\mathbf{q}^2	2 5	S3&3				
744	0.041667*4EPm4	4	\mathbf{q}^4	2 5	S4&4				
745	0.50000 * 4GAm4	4	\mathbf{q}^2	2 5	S4&4				
746	0.041667*5 EPm4	4	\mathbf{q}^4	25	S5&5				
747	0.50000 * 5 GAm4	4	\mathbf{q}^2	2 5	S5&5				
748	$0.041667*1\mathrm{EPm}22$	22	\mathbf{q}^4	25	S1&1				
749	0.50000 * 1 GAm 22	22	\mathbf{q}^2	25	S1&1				
750	$0.041667*2{ m EPm22}$	22	\mathbf{q}^4	2 5	S2&2				
751	0.50000 * 2 GAm 22	22	\mathbf{q}^2	25	S2&2				
752	$0.041667*3{ m EPm22}$	22	\mathbf{q}^4	2 5	S3&3				
753	0.50000 * 3 GAm 22	22	\mathbf{q}^2	25	S3&3				
754	$0.041667*4\mathrm{EPm}22$	22	\mathbf{q}^4	2 5	S4&4				
755	0.50000 * 4GAm22	22	\mathbf{q}^2	25	S4&4				
756	0.041667*5 EP m 22	22	\mathbf{q}^4	2 5	S5&5				
757	0.50000 * 5 GAm 22	22	\mathbf{q}^2	25	S5&5				
758	END-HAMILTONIAN-SEC	TION							
759									
760	END-OPERATOR								

References

- G. A. Worth, K. Giri, G. W. Richings, I. Burghardt, M. H. Beck, A. Jäckle, H.-D. Meyer, The QUANTICS Package, A Suite of Programs for Molecular Quantum Dynamics Simulations, Version 1.1, 2015.
- [2] G. A. Worth, Quantics: A General Purpose Package for Quantum Molecular Dynamics Simulations, Comput. Phys. Commun. 2020, 248, 107040.
- [3] C. J. Seliskar, S. P. McGlynn, Electronic Spectroscopy of Maleimide and Its Isoelectronic Molecules. I. Maleimide and N-Alkylmaleimides, J. Chem. Phys. 1971, 55, 4337-4342.