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1 The X2C Hamiltonian and its first-order derivatives
Starting from the four-component (4c) Dirac equation with embedded restricted kinetic balance, a matrix equation
for the electronic (positive-energy) solutions was obtained by Dyall [J. Chem. Phys. 106, 9618, 1997],(
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By eliminating the small-component of the electronic wavefunction through

B+ = XA+ , (S2)

where X is the matrix representation of the relativistic transformation operator, Eq. (S1) can be simplified to

L̃A+ = S̃A+ε+ (S3)

with

L̃ = X†T+TX−X† (T−W)X+V , (S4)

S̃ = S+
1

2c2 X†TX , (S5)

where S, T, and V are the matrices of the overlap, kinetic energy and potential energy operators, W is the matrix of
the relativistic operator 1

4c2 (σ ·p)V (r)(σ ·p). The relativistic transformation matrix X can be obtained either directly,
e.g., by solving Eq. (S1) first and then inverting Eq. (S2) [J. Chem. Phys. 106, 9618, 1997; J. Chem. Phys. 126,
064102, 2007; J. Chem. Theory Comput. 8, 875, 2012], or by a number of iterative techniques [J. Chem. Phys. 106,
9618, 1997; Theor. Chem. Acc. 117, 333, 2007; Theor. Chem. Acc. 130, 633, 2011].

In the case of many-electron systems, the effect of relativity on the electron-electron repulsion integrals is typically
ignored and the relativistically corrected one-electron Hamiltonian HX2C is employed in connection with the non-
relativistic many-electron formalism [J. Chem. Phys. 106, 9618, 1997; J. Comp. Chem. 23, 786, 2002; J. Chem. Phys.
131, 031104, 2009]. This requires renormalisation of the relativistic Hamiltonian in Eq. (S3) on the non-relativistic
metric S, which is carried out by

HX2C = R†L̃R , (S6)
with the renormalization matrix given by [J. Chem. Phys. 131, 031104, 2009]

R =
(
S̃−1S

)1/2
= S−1/2

(
S−1/2S̃S−1/2

)−1/2
S1/2 . (S7)

Within the one-electron (1e) approximation, the Fock matrix is given by

FX2C = HX2C +(J −K ) (S8)

and the total electronic energy of the X2C Hartree-Fock (HF) or the X2C Kohn-Sham (KS) method is calculated as

EX2C = trPHX2C +
1
2

trP(J −K ) , (S9)

P = CnC† , (S10)

where J and K are the matrices of the Coulomb and the exchange operators, P is the density matrix, and C and
n collect molecular orbital coefficients and occupation numbers, respectively. If contracted basis functions are used,
HX2C in Eq. (S9) has to be replaced by H X2C = C †HX2CC where C collects the contraction coefficients.

Although the simplest 1e approximation to X2C was introduced above, the relativistic two-electron contributions
can also be incorporated into X2C as well [Phys. Rep. 537, 59, 2014; J. Chem. Phys. 152, 180901, 2020].

Taking the derivative of the electronic energy in Eq. (S9) with respect to µ, where µ can be a nuclear coordinate,
a component of the electric field, etc., one obtains

EX2C
µ = trPHX2C

µ + trΩSµ +
1
2

trP(J −K )µ ′ . (S11)

Here, Ω is the energy-weighted density matrix and the prime at µ ′ implies that only the two-electron integrals rather
than the density matrix need to be differentiated. In Eq. (S11), only the first term on the right-hand side is different
from the non-relativistic counterpart.
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2 Effective contact density and contact density
For a series of selected neutral atoms, the (effective) contact densities have been calculated at the 4c-Dirac/PBE0
level of theory by DIRAC. The used basis set is Dyall’s VTZ in the fully uncontracted form; for ZA ≥ 52 (Te) the
basis functions are augmented by two tight s-functions and two tight p-functions (see Table S1). For ZA = 120 (Ubn),
the 37s34p14d7f primitive functions are taken from [Phys. Rev. A 2019, 99, 032509] and then augmented by 5d3f4g
functions generated by the same formula.

Table S1: Augmented steep sp-functions for Dyall’s VTZ basis set

ZA α(1)
s α(2)

s α(1)
p α(2)

p
52 (Te) 1689533095.97318 326697399.67811 56152304.27179 18911298.82774
56 (Ba) 1636418314.74528 317058973.26979 77312232.25183 26840432.47170
70 (Yb) 1471705634.19654 283995415.70922 123968963.98426 47389003.17764
80 (Hg) 1387359534.19698 265526893.25905 150264660.70268 62603502.62282
88 (Ra) 1312197346.81460 251510427.78891 192319104.72396 97069967.65813
102 (No) 1232778360.37081 237305998.42427 193800567.35591 105887155.79496
112 (Cn) 1177648003.14108 227881680.34238 193370401.96021 111623241.44033

The (effective) contact densities and their ratios (ρc
A/ρe

A = 1+ εA + ζA) are listed in Table S2, where εA is solely
determined by ZA at a given level of theory and ζA is much smaller than εA (see Table S4 below, for example),
depending on physical and chemical environments, nuclear radii of isotopes, and so on.

Table S2: Contact densities, effective densities, and ratios of neu-
tral atoms

ZA ρc
A (bohr−3) ρe

A (bohr−3) ratio ZA ρc
A (bohr−3) ρe

A (bohr−3) ratio
1 0.3124 0.3124 1.0000 38 60703.2579 59460.6827 1.0209
4 35.4428 35.4426 1.0000 43 99842.6877 97191.3356 1.0273
8 315.2035 315.1973 1.0000 48 159067.3569 153802.7729 1.0342
12 1138.6792 1138.5415 1.0001 49 174273.7084 168271.3806 1.0357
14 1870.9854 1870.5615 1.0002 50 190491.0267 183654.9504 1.0372
16 2885.8513 2884.7476 1.0004 51 208359.7059 200585.8934 1.0388
18 4245.1813 4242.4403 1.0006 52 228555.2054 218346.4871 1.0468
19 5135.1895 5125.6759 1.0019 56 324035.9250 307392.2509 1.0541
20 6103.5466 6089.0573 1.0024 70 1043024.7202 961683.8690 1.0846
25 13044.6793 12975.6159 1.0053 80 2360932.3836 2125511.1163 1.1108
30 24872.9703 24644.6238 1.0093 88 4553585.5301 4014369.4689 1.1343
34 39447.7125 38915.4016 1.0137 102 14953926.4084 12651871.4347 1.1820
35 44055.1015 43415.6544 1.0147 112 36379325.3833 29792102.0191 1.2211
36 49031.2513 48262.0252 1.0159 120 76838820.9548 61071113.0179 1.2582
37 54695.9774 53651.0535 1.0195

For neutral atoms (letting ζA = 0 in this case), εA may be fitted as a function of ZA

εA =

{
p1(ZA −1)2 + p2(ZA −1)4 ZA ∈ [1,18]
p1ZA + p2Z2

A ZA ∈ [19,120]
(S12)

where the fitting parameters p1 and p2 have been listed in Table S3. The calculated and fitted εA values are plotted
in Figure S2. Using Eq. (S12), effective densities may be estimated approximately by scaling contact densities.

Table S3: Fitting parameters in Eq. (S12)

ZA p1 p2
1-18 3.50354×10−8 7.54571×10−9

19-36 -2.89331×10−4 2.02493×10−5

37-51 -7.77268×10−5 1.64565×10−5

52-120 -6.19084×10−5 1.82206×10−5

3



S4

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0
1 E - 6

1 E - 5

1 E - 4

0 . 0 0 1

0 . 0 1

0 . 1

 C a l c u l a t e d  ε A
 F i t t e d  ε A

ε A

Z A

Figure S1: Calculated and fitted εA values relative to ZA.

For a series of Cn (ZA = 112) containing systems, the (effective) contact densities and ratios are calculated at the
X2C/PBE0 level, where εA ≈ 0.2224 for the neutral Cn atom and the ζA values are listed in Table S4.

Table S4: (Effective) contact densities and ζA values of Cn

re (Å) ρc
A (bohr−3) ρe

A (bohr−3) 108 ×ζA
Cn 36524922.21 29879227.13 0
CnF 2.108 36524880.87 29879193.55 -0.99
CnF+ 1.854 36524735.79 29879075.08 -1.87
CnF2 1.926 36524549.15 29878922.85 -3.73
CnF4 1.929 36524181.80 29878623.17 -7.11
CnO 1.863 36524967.49 29879264.55 -1.56
CnO2 1.830 36524976.17 29879271.90 -2.58
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3 One-particle density matrices of advanced ab initio methods

Table S5: One-particle (relaxed) density matrices of advanced ab
initio methods to generate natural orbitals

ab initio Method Reference Note
(SA-)MCSCF, (SA-)CASSCF [a] Eq. (7)

[b] Eq. (31)
(ic-)CASPT2 [c] Appendix A
(ic-)MR-CISD, (ic-)MR-AQCC [d] Eqs. (70-72)

[e] see the discussion after Eq. (46)
CCSD [f] Eqs. (A20-A22)

[g] Eqs. (28,29,51)
CCSD(T) [h] Eqs. (8,9,15,16)

[i] Eqs. (7,8,27)
MP2, MP3, MP4, CCSDT [j]
RI-(SCS-)MP2 [k] Eqs. (6-10)
a) J. Chem. Phys. 150, 194106, 2019. b) J. Chem. Phys. 152, 074102, 2020.
c) J. Chem. Phys. 119, 5044, 2003. d) J. Chem. Phys. 89, 5803, 1988.
e) Mol. Phys. 100, 1647, 2002. f ) J. Chem. Phys. 87, 5361, 1987.
g) J. Chem. Phys. 95, 2623, 1991. h) J. Chem. Phys. 94, 442, 1991.
i) Chem. Phys. Lett. 200, 1, 1992. j) J. Chem. Phys. 90, 1752, 1989.
k) J. Comput. Chem. 28, 839, 2007.
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4 Atomic density radial distributions of core orbitals
Most of the exchange-correlation (XC) functionals were optimized for the properties of valence electrons whereas
their accuracies in core electrons (especially in heavy atoms) are not clear. As an example, the radon atom with 78
core electrons (Rn8+) is calculated by the 22 most common XC functionals, including
APF (APFD without dispersion), B3LYP, B3PW91, BHandHLYP, BLYP, BP86, CAM-B3LYP, HCTH407, HSE06,
M06, M06-2X, M06-L, M11, MN15, O3LYP, PBE0, SOGGA11X, tHCTH, tHCTHhyb, TPSSh, ωB97X (ωB97XD
without dispersion), and X3LYP.

The scalar relativistic effects are taken into account by the sf-X2C Hamiltonian with the Gaussian-type finite
nuclear model (FNM), and the basis set is Sapporo-DKH3-TZP-2012 (contracted with FNM) where the s-functions
are uncontracted and augmented by two tight s-functions with the exponenets 7.195446e+08 and 1.444330e+08. The
radical core density distributions (ξ (R) = 4πR2ρ(R)) of Rn8+ by different functionals are compared with the reference
ones by sf-X2C/CCSD(T) natural orbitals without frozen cores, and the relative errors are plotted in Figure S4.

Figure S4 shows that the best three functionals are M06, HSE06, and PBE0 in both the nucleus region (R ≤ 0.01
Å) and the core region, and a similar conclusion may be made for other rare gas ions. Among the three functionals,
PBE0 has been widely supported by modern quantum chemistry programs.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

|∆ξ
| (a

.u.
)

R  ( A n g . )

 P B E 0
 M 0 6
 H S E 0 6

0 . 0 0 0 0 . 0 0 2 0 . 0 0 4 0 . 0 0 6 0 . 0 0 8 0 . 0 1 0
0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

Figure S2: Error of density radial distributions of Rn8+ by different functionals.
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5 Results for 57Fe
As seen in Table S6, the effective densities of the iron atom may be decomposed into different occupied orbitals
or spinors, which are calculated at the levels of non-relativistic HF, sf-X2C/HF, X2C/HF, and 4c-Dirac/HF with
Dyall’s uncontracted VTZ basis set.

The dominant contributions to effective densities come from the ns (ns1/2) shells, but the np (np1/2) shells also
contribute to the effective densities significantly due to the relativistic operator 1

4c2 (σ ·p)V (r)(σ ·p). However, the
latter contributions are missing in non-relativistic calculations. As pointed by Knecht et. al. [Theor. Chem. Acc.
2011, 129, 631], other shells like 2p3/2 and 3d3/2 also make tiny contributions to effective densities (< 0.001 bohr−3

in the case of Fe).

Table S6: Effective densities (in bohr−3) in different shells of Fe

Shell non-rel. sf-X2C Shell X2C 4c-Dirac
1s 10722.92 13393.64 1s1/2 13393.61 13384.21
2s 986.27 1269.47 2s1/2 1269.46 1268.83
2p 0.00 5.31 2p1/2 5.82 5.80

2p3/2 0.00 0.00
3s 135.61 175.25 3s1/2 175.26 175.11
3p 0.00 0.70 3p1/2 0.77 0.77

3p3/2 0.00 0.00
4s 3.78 4.95 4s1/2 4.95 4.95
3d 0.00 0.00 3d3/2 0.00 0.00

3d5/2 0.00 0.00
total 11848.59 14849.34 total 14849.86 14839.67

The effective densities of Fe in some compounds by sf-X2C-AU without or with 1CA are collected in Table S7,
in which the natural orbitals are computed at either sf-DKH2/RI-SCS-MP2 or sf-DKH2/ICE-SCF level of theory.

Table S7: Isomer shifts (in mm/s) and effective densities (in
bohr−3) of Fe in selected compounds

RI-SCS-MP2 orbitals ICE-SCF orbitals
Species 2S+1 Expt. δ IS sf-X2C-AU 1CA sf-X2C-AU 1CA Coordinates
FeCl 2–

4 5 0.90 16455.73 16455.87 16454.57 16454.70 [a]
Fe(CN) 4–

6 1 -0.02 16460.57 16460.71 16459.88 16459.96 [a]
FeF 4–

6 5 1.34 16453.87 16453.96 16452.88 16452.96 [a]
FeCl –

4 6 0.19 16459.12 16459.28 16458.50 16458.65 [a]
Fe(CN) 3–

6 2 -0.13 16460.40 16460.54 16459.96 16460.09 [a]
FeF 3–

6 6 0.48 16457.63 16457.75 16456.84 16456.93 [a]
Fe(H2O) 3+

6 6 0.51 16457.93 16457.97 16457.00 16457.01 [a]
FeO 2–

4 3 -0.87 16463.42 16463.81 16464.70 16465.07 [a]
Fe(CO)5 1 -0.18 16460.93 16461.19 16459.72 16460.05 [a]
FeBr –

6 6 0.25 16459.31 16459.46 16458.80 16458.94 [b]
Fe(H2O)5NO2+ 4 0.76 16456.54 16456.64 16454.80 16454.91 [c]
FeS4C8O 2–

4 5 0.67 16457.28 16457.42 16455.66 16455.79 [c]
a) Inorg. Chem. 48, 784, 2009 by TPSS.
b) Inorg. Chim. Acta 337, 181, 2002.
c) Inorg. Chem. 48, 9155, 2009.
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6 Radical density distributions of Hg
At the sf-X2C/HF level, the radical density distributions of occupied shells of the Hg atom are plotted in Figure S3.
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Figure S3: Radical density distributions of Hg.

8



S9

7 About the RelED program
Molecular orbitals used in the RelED program may be calculated by the following relativistic Hamiltonians with
FNM,

1. sf-X2C
The sf-X2C Hamiltonian with FNM has been implemented in the quantum chemistry programs collected in
Table S8, but some of them have not been supported or tested by the RelED program currently.

2. sf-BSS
The BSS Hamiltonian (also called IOTC or IODKH) is closely related to X2C.

3. sf-DKHn
The low-order Douglas-Kroll-Hess Hamiltonians (e.g. DKH2, DKH3, and DKH4) with FNM may work for the
contact density of light atoms before 5d metals, but are not good choices for heavier atoms.

Molecular orbitals with point charge nuclear model (PNM) may also be possible for the calibration procedure, but
this has not been fully tested.

Table S8: Quantum chemistry program list with FNM imple-
mented

Program Relativistic Hamiltonian Data format
BAGEL sf-DKH2 Molden; to be tested
BDF-G sf-X2C, sf-BSS, sf-DKHn Molden
CFour a) sf-X2C Molden
Cologne sf-X2C Molden, Fchk b,c)

X2C Fchk c)

Columbus d) sf-X2C, sf-BSS, sf-DKHn Molden; to be tested
Dalton sf-DKH2 Molden; to be tested
Gaussian sf-DKH2 Fchk b,c)

DKH4 Fchk c)

(Open)Molcas sf-X2C, sf-BSS, sf-DKHn Molden; to be tested
Molpro e) sf-X2C, sf-DKHn Molden
MRCC f ) sf-X2C Molden
NWChem g) sf-DKH2, sf-DKH3 Molden; to be tested
ORCA sf-DKH2 Molden
PySCF sf-X2C Molden; to be tested
a) Since CFour 2.1.
b) Multiwfn is needed to get a Molden file.
c) An interface to the Fchk file will be available soon in RelED.
d) Through the interface to (Open)Molcas.
e) Since Molpro 2019.
f ) Through the interface to CFour.
g) Since NWChem 7.0.
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