Supporting Information for

An unbiased confirmation of the participating isomers of $C_2B_5^-$ in the formation of its photo-detachment spectra, a theoretical study

Abhishek Kumar¹, T. Rajagopala $\mathrm{Rao}^{1\dagger}$ and Rudraditya Sarkar^{2*}

¹ Department of Chemistry, Indian Institute of Technology, Patna, Bihta, Bihar, 801103, India and

² CEISAM Lab, UMR 6230, University of Nantes, F-44000 Nantes, France*

TABLE S1: Bond length(\mathring{A}) at the equilibrium ground state configuration of $C_2B_5^-$ and C_2B_5 (isomer-I) belongs to C_{2v} point group symmetry. The geometry optimization is performed with Møller-Plesset perturbation (MP2) level of theory employing Dunning's correlation consistent polarized valence triple-zeta (cc-pVTZ) basis set. The schematic numbering of the atoms are shown in Fig. 1(a) in the main manuscript.

Bond length	$\mathrm{C}_2\mathrm{B}_5^-$	C_2B_5
$C_1 - B_6$	1.4398	1.3902
$C_1 - B_4$	1.5026	1.4447
$B_6 - B_4$	1.6793	1.7499
$B_4 - B_5$	1.5934	1.5745
$B_4 - B_3$	1.6204	1.6266
$B_{5} - B_{7}$	1.6793	1.7499
$B_5 - C_2$	1.5026	1.4447
$c_2 - B_7$	1.4398	1.3902
$B_{5} - B_{3}$	1.9346	2.1918

TABLE S2: Bond length(\mathring{A}) at the equilibrium ground state configuration of $C_2B_5^-$ and C_2B_5 (isomer-II) belongs to C_s point group symmetry. The geometry optimization is performed with Møller-Plesset perturbation (MP2) level of theory employing Dunning's correlation consistent polarized valence triple-zeta (cc-pVTZ) basis set. The schematic numbering of the atoms are shown in Fig. 1(b) in the main manuscript.

Bond length	$\mathrm{C_2B}_5^-$	C_2B_5
$B_7 - C_1$	1.4555	1.4263
$B_7 - B_4$	1.6853	1.6773
$C_1 - B_4$	1.5692	1.5956
$C_1 - B_3$	1.4571	1.4249
$B_4 - B_5$	1.6388	1.6266
$B_4 - B_3$	1.8306	1.7762
$B_{5} - B_{3}$	1.9362	2.2686
$C_{5} - B_{6}$	1.6747	1.6795
$B_3 - B_6$	1.6009	1.6234
$B_5 - C_2$	1.4811	1.4468
$C_2 - B_6$	1.4371	1.4284

	C_{2v}			$\mathbf{C}s$	
Vibrational	Anionic	Neutral	Vibrational	Anionic	Neutral
mode	frequencies	frequencies	mode	frequencies	frequencies
		(Isomer-I)			(Isomer-II)
$\nu_1(a_1)$	0.0496	0.0494	$ u_1(a^{'})$	0.0417	0.0529
$\nu_2(a_1)$	0.0656	0.0715	$\nu_{2}(a^{'})$	0.0573	0.0687
$ u_3(a_1)$	0.0835	0.0803	$\nu_{3}(a^{'})$	0.0651	0.0681
$ u_4(a_1)$	0.1068	0.1112	$\nu_4(a^{'})$	0.0786	0.0877
$\nu_5(a_1)$	0.1613	0.1641	$\nu_{5}(a^{'})$	0.0950	0.1074
$\nu_6(a_1)$	0.1770	0.1732	$\nu_{6}(a^{'})$	0.1087	0.1091
$ u_7(b_1)$	0.0226	0.0368	$\nu_7(a^{'})$	0.118	0.1233
$ u_8(b_1)$	0.0570	0.0588	$\nu_8(a^{'})$	0.1461	0.1540
$ u_9(b_2)$	0.0358	0.0511	$\nu_{9}(a^{'})$	0.1572	0.1603
$ u_{10}(b_2)$	0.1010	0.0965	$\nu_{10}(a^{'})$	0.1728	0.1694
$ u_{11}(b_2)$	0.1218	0.1224	$\nu_{11}(a^{'})$	0.1866	0.1866
$ u_{12}(b_2)$	0.1478	0.1518	$ u_{12}(a^{"}) $	0.0217	0.0356
$ u_{13}(b_2)$	0.1667	0.1724	$ u_{13}(a^{"}) $	0.0323	0.0384
$\nu_{14}(a_2)$	0.0325	0.0327	$\nu_{14}(a^{"})$	0.0566	0.0570
$ \nu_{15}(a_2) $	0.0618	0.0615	$\nu_{15}(a^{"})$	0.0626	0.06242

TABLE S3: Frequencies (in eV) of both the isomers of $C_2B_5^-$ and C_2B_5 in their ground state equilibrium geometries.

TABLE S4: The vertical detachment energies (in eV) of the electronic states of isomer-I and isomer-II using different active spaces employing CASSCF and MRCI level of theories.

Ison	Isomer-I $(CASSCF/cc-pVTZ)$								
Active space	$\widetilde{X}^2 A_1$	$\widetilde{A}^2 B_2$	$\widetilde{B}^2 A_2$	$\widetilde{C}^2 B_1$	$\widetilde{D}^2 A_1$				
(10e, 10o)	2.7775	3.9480	4.6621	5.1380	6.0722				
(12e, 10o)	2.3309	3.8251	3.8897	4.3261	5.4038				
(10e, 11o)	2.7443	4.3175	4.6352	4.8294	6.0855				
(12e, 11o)	2.4268	3.8719	3.9469	4.5451	5.4492				
(10e, 12o)	2.7880	4.2958	4.6525	4.9122	6.1513				
(12e, 12o)	2.3426	4.1629	3.9407	4.2637	5.4164				
Isc	omer-I	(MRCI	/cc-pV	TZ)					
(10e, 10o)	3.2629	4.6906	5.1368	6.4018	6.5483				
(12e, 10o)	3.0552	4.5709	4.6840	5.4735	5.9838				
(10e, 11o)	3.2650	4.7457	5.1188	5.8789	6.5375				
(12e, 11o)	3.0497	4.6980	4.5816	5.5954	5.9987				
(10e, 12o)	3.2755	4.7470	5.1212	5.8994	6.5491				
(12e, 12o)	3.0345	4.7594	4.5604	5.4406	5.9718				
Ison	ner-II (CASSC	CF/cc-p	VTZ)					
Active space	$\widetilde{X}^2 A^{'}$	$\widetilde{A}^2 A^{\prime\prime}$	$\widetilde{B}^2 A'$	$\tilde{C}^{2}A^{'}$	$\widetilde{D}^{2}A^{'}$				
(10e, 10o)	1.8395	3.5691	4.6525	5.2653	5.3492				
(12e, 10o)	1.6692	3.3517	4.3310	5.1361	5.2208				

(10e, 11o)	1.8859	3.5948	4.6132	5.3125	5.3581
(10e, 12o)	1.9290	3.6557	4.6163	5.2617	5.3764

Isomer-II $(MRCI/cc-pVTZ)$								
(10e, 10o)	$2.4782 \ 4.1752 \ 5.3736 \ 5.3916 \ 5.7219$							
(12e, 10o)	2.4045 4.1477 4.9871 5.8542 5.8657							

TABLE S5: Comparison of experimental [1] vertical detachment energies with calculated MRCI(12e,10o)/cc-pVTZ level of theory in the present study and TD-B3LYP, OVGF and

CCSD(T) level theories performed in the Ref. [1]. Here, (11) represents the electronic

state of isomer-I (C_{2v}) and (12) represents the electronic state of isomer-II (C_s).

States	Ref. [1]	This study	Ι	Ref. [1]	
in Ref. $[1]$	\exp	MRCI/cc- $pVTZ$	TD-B3LYP	OVGF	$\operatorname{CCSD}(T)$
$X(c_s)$	2.61	2.40(12)	2.54(12)	2.74	2.63
$\mathcal{A}(\mathcal{C}_{2v})$	2.95	3.05(11)	3.00(11)	3.08	3.13
$B(C_s)$	4.06	4.15(12)	4.13(12)	4.47	
$C(C_{2v})$	4.36	4.57(11)	4.42(11)	4.73	4.49
$\mathbf{D}(\mathbf{C}_{2v})$	4.93	4.68(11)	4.79(11)	4.90	4.97
$E(C_s)$	5.09	4.99(12)	5.08(12)	5.30	5.42
$F(C_s)$	5.62	5.98(11), 5.85(12)	5.57(12)	5.86	
$G(C_s)$	~ 6	5.87(12)			

TABLE S6: The frequencies of the reference state of the isomer-I and the intra-state coupling parameters of all vibrational modes of the $\widetilde{X}^2 A_1$ state of isomer-I are given in this table. The parameters are given in eV unit.

Vibrational	Anionic	E ₀	$\kappa \left(rac{\kappa^2}{2\omega^2} ight)$	γ	δ	ϵ	ζ
mode	frequency						
ν_1 (a ₁)	0.0496	3.06188	-0.10417 (2.2054)	-0.00029	0.00080		
ν_2 (a ₁)	0.0656	3.06312	-0.03814 (0.1690)	0.01228			
ν_3 (a ₁)	0.0835	3.06305	$0.10549 \ (0.7966)$	-0.00638			
$\nu_4~(\mathrm{a}_1)$	0.1068	3.06050	-0.12287 (0.6617)	0.00903			
ν_5 (a ₁)	0.1613	3.06118	$0.00413 \ (0.0003)$	0.00576	-0.00062	0.00001	0.00001
ν_6 (a ₁)	0.1770	3.06045	-0.16019 (0.4095)	-0.00743			
$\nu_7~(b_1)$	0.0226	3.00458		0.03756			
$\nu_8~(b_1)$	0.0570	3.03779		0.00365			
$\nu_9~(b_2)$	0.0358	3.00768		0.03701			
$\nu_{10} \ (b_2)$	0.1010	3.01318		-0.00868			
ν_{11} (b ₂)	0.1218	3.00902		0.00135			
$\nu_{12} (b_2)$	0.1478	3.00810		0.00813		-0.00005	
ν_{13} (b ₂)	0.1667	3.00922		0.01154			
ν_{14} (a ₂)	0.0325	3.02865		0.00043		-0.00003	
ν_{15} (a ₂)	0.0618	3.01258		-0.00063			

TABLE S7: The frequencies of the reference state of the isomer-I and the intra-state coupling parameters of all vibrational modes of the \tilde{A}^2B_2 state of isomer-I are given in this table. The parameters are given in eV unit.

Vibrational	Anionic	E ₀	$\kappa \left(\frac{\kappa^2}{2\omega^2}\right)$	γ	δ	ϵ	ζ
mode	frequency						
ν_1 (a ₁)	0.0496	4.57193	$0.07140\ (1.0361)$	-0.00188			
ν_2 (a ₁)	0.0656	4.57084	$0.00358\ (0.0015)$	0.00083	0.00000	-0.00001	
ν_3 (a ₁)	0.0835	4.57124	$0.08572 \ (0.5269)$	-0.00422			
$\nu_4~(a_1)$	0.1068	4.57084	-0.08476 (0.3149)	-0.00591			
ν_5 (a ₁)	0.1613	4.57253	$0.04858\ (0.0453)$	-0.00293			
ν_6 (a ₁)	0.1770	4.46938	$0.01613 \ (0.0042)$	-0.00493	-0.00061		
$\nu_7 (b_1)$	0.0226	4.98253		0.07089			
$\nu_8 (b_1)$	0.0570	5.48320		-0.02213			
$\nu_9 (b_2)$	0.0358	4.54818		0.00326		-0.00004	
$\nu_{10} \ (b_2)$	0.1010	4.54113		0.00408		-0.00013	
ν_{11} (b ₂)	0.1218	4.54943		-0.00336			
$\nu_{12} \ (b_2)$	0.1478	4.54635		-0.00740		0.00005	
ν_{13} (b ₂)	0.1667	4.54637		0.01386		-0.00010	
ν_{14} (a ₂)	0.0325	4.54660		-0.00227			
ν_{15} (a ₂)	0.0618	4.53935		-0.00536			

TABLE S8: The frequencies of the reference state of the isomer-I and the intra-state coupling parameters of all vibrational modes of the $\tilde{B}^2 A_2$ state of isomer-I are given in this table. The parameters are given in eV unit.

Vibrational	Anionic	Ea	$\kappa \left(\frac{\kappa^2}{2}\right)$	~	δ	6	
mode	frequency	\mathbf{L}_0	$\kappa (2\omega^2)$	Y	0	C	ς
ν_1 (a ₁)	0.0496	4.68139	-0.02469 (0.1238)	0.00174	0.00030		
ν_2 (a ₁)	0.0656	4.68322	-0.01429 (0.0237)	-0.00868			
ν_3 (a ₁)	0.0835	4.61263	-0.00285 (0.0006)	0.00115			
$\nu_4~(\mathrm{a_1})$	0.1068	4.68458	-0.05193 (0.1182)	-0.00053			
ν_5 (a ₁)	0.1613	4.68435	$0.00947 \ (0.0017)$	0.00522			
ν_6 (a ₁)	0.1770	4.61329	$0.19575 \ (0.6115)$	0.00827			
$\nu_7 (b_1)$	0.0226	4.48692		-0.02313			
$\nu_8 (b_1)$	0.0570	4.55611		-0.04836		0.00042	
$\nu_9 (b_2)$	0.0358	4.74553		-0.00145			
ν_{10} (b ₂)	0.1010	4.74652		0.00058		-0.00005	
$\nu_{11}~(\mathrm{b}_2)$	0.1218	-		-			
$\nu_{12}~(\mathrm{b}_2)$	0.1478	4.74048		-0.02582			
ν_{13} (b ₂)	0.1667	4.74681		0.01664			
$\nu_{14}~(a_2)$	0.0325	4.73017		-0.00753			
$\nu_{15}~(a_2)$	0.0618	4.72736		-0.01494			

TABLE S9: The frequencies of the reference state of the isomer-I and the intra-state coupling parameters of all vibrational modes of the $\tilde{C}^2 B_1$ state of isomer-I are given in this table. The parameters are given in eV unit.

Vibrational	Anionic	E_0	$\kappa \left(\frac{\kappa^2}{2\omega^2}\right)$	γ	δ	ϵ	ζ
mode	frequency						
ν_1 (a ₁)	0.0496	4.91959	-0.27967 (15.8963)	-0.03305	0.00383		
ν_2 (a ₁)	0.0656	4.92512	-0.07239(0.6088)	0.01776			
ν_3 (a ₁)	0.0835	4.92384	0.12602(1.1388)	-0.00866			
ν_4 (a ₁)	0.1068	4.92244	-0.22057 (2.1326)	0.00725			
ν_5 (a ₁)	0.1613	4.93629	-0.10890 (0.2279)	-0.01484	0.00173		
ν_6 (a ₁)	0.1770	4.92064	-0.29784(1.4157)	-0.01974			
$\nu_7 (b_1)$	0.0226	4.67842		0.00392			
$\nu_8 (b_1)$	0.0570	4.69083		0.04579		-0.00042	1
$\nu_9 (b_2)$	0.0358	5.43417		0.05623			
$\nu_{10}~(b_2)$	0.1010	5.39726		0.00126		-0.00008	8
ν_{11} (b ₂)	0.1218	-		-			
ν_{12} (b ₂)	0.1478	5.38979		0.00770			
ν_{13} (b ₂)	0.1667	5.42366		-0.02289		0.00012	2
ν_{14} (a ₂)	0.0325	5.32798		0.02151		-0.00018	8
ν_{15} (a ₂)	0.0618	5.35472		-0.03118			

TABLE S10: The frequencies of the reference state of the isomer-I and the intra-state coupling parameters of all vibrational modes of the $\widetilde{D}^2 A_1$ state of isomer-I are given in this table. The parameters are given in eV unit.

Vibrational	Anionic	E ₀	$\kappa \left(\frac{\kappa^2}{2\omega^2}\right)$	γ	δ	ϵ	ζ
mode	frequency						
ν_1 (a ₁)	0.0496	5.99131	$0.06215 \ (0.7850)$	-0.01430	-0.00061	-0.00024	
$\nu_2~(a_1)$	0.0656	5.99127	$0.00068 \ (0.0001)$	-0.00170	-0.00004	-0.00002	
ν_3 (a ₁)	0.0835	5.95735	-0.01440 (0.0149)	0.00414			
$\nu_4~(a_1)$	0.1068	5.99029	-0.09777 (0.4184)	-0.00357	0.00173	-0.00025	
$\nu_5~(a_1)$	0.1613	5.95146	-0.02718 (0.0142)	-0.01659	-0.00062		
ν_6 (a ₁)	0.1770	5.95589	-0.04725(0.0356)	0.00791			
$\nu_7 (b_1)$	0.0226	5.95738		-0.00733			
$\nu_8 (b_1)$	0.0570	6.00420		-0.01256			
$\nu_9 (b_2)$	0.0358	5.98033		-0.03140		0.00026	
$\nu_{10} \ (b_2)$	0.1010	5.98680		-0.03837			
ν_{11} (b ₂)	0.1218	5.96342		-0.02255			
$\nu_{12} (b_2)$	0.1478	5.97492		0.00459		-0.00018	
$\nu_{13} (b_2)$	0.1667	5.98219		0.00988		-0.00013	
ν_{14} (a ₂)	0.0325	5.96838		-0.01627			
ν_{15} (a ₂)	0.0618	5.97780		-0.01030			

TABLE S11: The frequencies of the reference state of the isomer-II and the intra-state coupling parameters of all vibrational modes of the $\widetilde{X}^2 A'$ state of isomer-II are given in

Vibrational	Anionic	E ₀	$\kappa \left(rac{\kappa^2}{2\omega^2} \right)$	γ	δ	ϵ	ζ
mode	frequency						
$ u_1 (\mathrm{a}')$	0.0417	2.40715	$0.07336\ (1.5474)$	0.02557			
$ u_2 (\mathrm{a}')$	0.0573	2.41135	$0.05040 \ (0.3868)$	0.02521	0.00034		
$ u_3~(\mathrm{a}')$	0.0651	2.40277	$0.03913 \ (0.1806)$	0.00617			
$\nu_4~({\rm a}')$	0.0786	2.41027	$0.12192\ (1.2030)$	0.01945			
$\nu_5~({\rm a}')$	0.0950	2.40627	$0.00681 \ (0.0026)$	0.02640	-0.00000	-0.00018	
$\nu_{6}~({\rm a}')$	0.1087	2.40677	$0.07975 \ (0.2691)$	0.00075			
$ u_7 (a')$	0.1180	2.40343	$0.06185\ (0.1374)$	0.01085	-0.00057		
$ u_8~({ m a}')$	0.1461	2.40911	-0.00754 (0.0013)	0.01613	0.00033		
$\nu_9~({\rm a}')$	0.1572	2.40629	$0.00751\ (0.0011)$	0.00629	0.00005		
$\nu_{10}~({\rm a}')$	0.1728	2.38190	$0.14746\ (0.3641)$	-0.00669			
$\nu_{11}~(a^{'})$	0.1866	2.38235	-0.00822 (0.0010)	-0.00041			
$\nu_{12}~(a^{''})$	0.0217	2.39606		0.03680			
$\nu_{13} (a'')$	0.0323	2.39652		0.01328			
$\nu_{14} ~(a'')$	0.0566	2.39646		0.00088			
$\nu_{15} (a'')$	0.0626	2.39643		-0.00035		0.00006	

this table. The parameters are given in eV unit.

TABLE S12: The frequencies of the reference state of the isomer-II and the intra-state coupling parameters of all vibrational modes of the $\tilde{A}^2 A'$ state of isomer-II are given in

Vibrational	Anionic	E_0	$\kappa \left(rac{\kappa^2}{2\omega^2} \right)$	γ	δ	ϵ	ζ
mode	frequency						
$ u_1 (\mathrm{a}')$	0.0417	4.14209	-0.05716 (0.9395)	-0.00869	0.00124		
$ u_2 (\mathrm{a}')$	0.0573	4.14423	$0.02549\ (0.0989)$	-0.00382	-0.00046		
$ u_3 (\mathrm{a}')$	0.0651	4.14622	$0.03376\ (0.1345)$	0.00205	-0.00062		
$ u_4~(\mathrm{a}')$	0.0786	4.14523	$0.05165 \ (0.2159)$	-0.01654			
$ u_5 (\mathrm{a}')$	0.0950	4.14920	-0.07084 (0.2780)	-0.01470			
$\nu_{6}~({\rm a}^{'})$	0.1087	4.14832	$0.10528\ (0.4690)$	0.00691			
$ u_7 (a') $	0.1180	4.15085	$0.01313\ (0.0062)$	-0.00522	0.00046		
$ u_8~({ m a}')$	0.1461	4.14394	$0.03920 \ (0.0360)$	0.00146			
$ u_9 (\mathrm{a}')$	0.1572	4.14754	-0.00773 (0.0012)	0.00065	-0.00011	-0.00007	7
$\nu_{10}~({\rm a}')$	0.1728	4.05981	-0.01702 (0.0049)	0.01422			
$\nu_{11}~(a')$	0.1866	4.14067	0.09141 (0.1200)	0.00016	-0.00048		
$\nu_{12}~(a^{''})$	0.0217	4.13940		0.00676		-0.00014	1
$\nu_{13}~(a^{''})$	0.0323	4.13954		-0.00513			
$\nu_{14}~(a^{''})$	0.0566	4.13930		-0.00948			
$\nu_{15}~(a^{''})$	0.0626	4.13825		-0.01525			

this table. The parameters are given in eV unit.

TABLE S13: The frequencies of the reference state of the isomer-II and the intra-state coupling parameters of all vibrational modes of the $\tilde{B}^2 A''$ state of isomer-II are given in

Vibrational	Anionic	E ₀	$\kappa \left(\frac{\kappa^2}{2\omega^2}\right)$	γ	δ	ϵ	ζ
mode	frequency						
$ u_1 (\mathrm{a}')$	0.0417	4.98375	-0.02939 (0.2484)	0.00075			
$ u_2 (\mathrm{a}')$	0.0573	4.98600	$0.04334 \ (0.2860)$	-0.00539			
$ u_3 (\mathrm{a}')$	0.0651	4.98531	$0.01458\ (0.0251)$	-0.00343			
$ u_4~(\mathrm{a}')$	0.0786	4.98718	$0.03054\ (0.0755)$	-0.00221	-0.00024		
$\nu_5~({\rm a}')$	0.0950	4.98789	$0.05108\ (0.1446)$	-0.00023			
$\nu_{6}~(\mathrm{a}')$	0.1087	4.98556	$0.06558\ (0.1820)$	0.00265			
$\nu_7~({\rm a}')$	0.1180	4.98571	$0.02056\ (0.0152)$	0.00372	-0.00014		
$ u_8~({ m a}')$	0.1461	4.98664	$0.02873 \ (0.0193)$	-0.01919	-0.00058		
$\nu_9~({\rm a}')$	0.1572	4.98832	-0.02229 (0.0101)	0.00499			
$\nu_{10}~({\rm a}')$	0.1728	4.89533	-0.22228 (0.8273)	0.03666	0.00484	-0.00116	
$\nu_{11}~(a^{'})$	0.1866	4.98294	-0.05079(0.0370)	0.01380			
$\nu_{12} (a'')$	0.0217	4.96268		-0.01743			
$\nu_{13} (a'')$	0.0323	4.96286		-0.02045			
$\nu_{14} (a'')$	0.0566	4.96354		-0.00670			
$\nu_{15} (a'')$	0.0626	4.96501		-0.0055		-0.00004	:

this table. The parameters are given in eV unit.

Vibrational	Anionic	E ₀	$\kappa \left(rac{\kappa^2}{2\omega^2} ight)$	γ	δ	ϵ	ζ
mode	frequency						
$ u_1 (\mathrm{a}')$	0.0417	5.86834	0.02006 (0.1157)	-0.02626	-0.00389	0.00020	0.00008
$ u_2~(\mathrm{a}')$	0.0573	5.83498	0.12084 (2.2237)	-0.00261			
$ u_3~(\mathrm{a}')$	0.0651	5.84870	$0.00464 \ (0.0025)$	-0.02005			
$ u_4~(\mathrm{a}')$	0.0786	5.84787	0.19709(3.1438)	0.01567			
$\nu_5~({\rm a}')$	0.0950	5.86349	$0.20971 \ (2.4365)$	-0.01001	-0.00341		
$\nu_6~({\rm a}')$	0.1087	5.85446	0.10746 (0.4887)	-0.00122			
$ u_7 (a')$	0.1180	5.86186	$0.04043 \ (0.0587)$	-0.03827			
$ u_8~({ m a}')$	0.1461	5.80910	$0.08025 \ (0.1509)$	-0.06145	-0.00078	0.00073	
$\nu_9~({\rm a}')$	0.1572	5.85783	$0.10328 \ (0.2158)$	-0.01033			
$\nu_{10}~({ m a}')$	0.1728	5.50398	-0.02102 (0.0074)	-0.00686	0.00147	0.00036	-0.00002
$\nu_{11}~({\rm a}')$	0.1866	5.83502	$0.12921 \ (0.2397)$	0.03780			
$\nu_{12} ~(a'')$	0.0217	5.83970		-0.01903			
$\nu_{13} (a'')$	0.0323	5.82847		-0.06050			
$\nu_{14}~(a'')$	0.0566	5.83239		-0.02290			
$\nu_{15}~({ m a}'')$	0.0626	5.82989		-0.05941		0.00048	

TABLE S14: The frequencies of the reference state of the isomer-II and the intra-state coupling parameters of all vibrational modes of the $\tilde{C}^2 A'$ state of isomer-II are given in this table. The parameters are given in eV unit.

TABLE S15: The frequencies of the reference state of the isomer-II and the intra-state coupling parameters of all vibrational modes of the $\widetilde{D}^2 A'$ state of isomer-II are given in

Vibrational	Anionic	E_0	$\kappa \left(rac{\kappa^2}{2\omega^2} ight)$	γ	δ	ϵ	ζ
mode	frequency						
$ u_1 (\mathrm{a}')$	0.0417	5.84476	-0.14781 (6.2821)	-0.00634			
$ u_2 (\mathrm{a}')$	0.0573	5.85743	-0.06260 (0.5968)	0.00096			
$ u_3 (\mathrm{a}')$	0.0651	5.86409	-0.00041 (0.0000)	-0.00742	-0.00003	0.00012	
$ u_4~(\mathrm{a}')$	0.0786	5.86578	-0.08176 (0.5410)	0.00272	0.00173		
$\nu_5~({\rm a}')$	0.0950	5.85595	-0.11115 (0.6838)	-0.01503	0.00160	0.00021	
$\nu_6~({\rm a}')$	0.1087	5.85741	$0.06000 \ (0.1523)$	0.00513	-0.00195	-0.00047	
$ u_7 (\mathrm{a}')$	0.1180	5.86787	$0.02627 \ (0.0248)$	-0.01614	0.00023		
$ u_8~({ m a}')$	0.1461	5.88159	$0.07971 \ (0.1488)$	0.01086			
$\nu_9~({\rm a}')$	0.1572	5.86506	$0.01704\ (0.0059)$	-0.01452	0.00031	0.00014	
$\nu_{10}~(a^{'})$	0.1728	5.78806	$0.06173\ (0.0638)$	0.01800	-0.00255	-0.00036	
$\nu_{11}~(\mathrm{a}')$	0.1866	5.85423	-0.05829 (0.0488)	-0.00388			
$\nu_{12}~(a'')$	0.0217	5.84773		0.01936			
$\nu_{13} (a'')$	0.0323	5.85627		-0.00161		-0.00009	
$\nu_{14} ~(a'')$	0.0566	5.85580		-0.01902			
$\nu_{15} (a'')$	0.0626	5.85598		-0.01701			

this table. The parameters are given in eV unit.

TABLE S16: The inter-state coupling between $\widetilde{X}^2 A_1 - \widetilde{A}^2 B_2$ and $\widetilde{A}^2 B_2 - \widetilde{B}^2 A_2$ states of isomer-I and the same between $\widetilde{A}^2 A' - \widetilde{B}^2 A''$ states of isomer-II are given in this table. The frequency of the coupling vibrational modes are also given in the table. All units are given in eV.

Electronic states of isomer-I						
Vibrational	Anionic	$\lambda \; (rac{\lambda^2}{2\omega^2})$	eta			
mode	frequency					
$ ilde{X}^2A_1 ext{-} ilde{A}^2B_2$						
$ u_{10}$	0.1010	$0.1651\ (1.3360)$	-0.0016			
	$\tilde{A}^2 B_2$ -	$\tilde{B}^2 A_2$				
$ u_7 $	0.0226	0.1204 (14.1908)	0.0015			
$ u_8$	0.0570	$0.0665\ (0.6805)$	-0.0009			

Electronic states of isomer-II

$\tilde{A}^2 A' - \tilde{B}^2 A''$

 $\nu_{14} \ 0.0566 \ \ 0.0340 \ (0.1804)$

 $\nu_{15} \ 0.0626 \ \ 0.0437 \ (0.2437)$

	$\widetilde{A}^2 B_2 - \widetilde{C}^2$	B_1		$\widetilde{B}^2 A_2 - \widetilde{C}^2$	B_1
Vibrational	Anionic	λ	Vibrational	Anionic	λ
mode	Frequency	$\left(\frac{\lambda^2}{2\omega^2}\right)$	mode	Frequency	$\left(rac{\lambda^2}{2\omega^2} ight)$
ν_{14}	0.0325	0.0634(1.9027)	$ u_9$	0.0358	0.1031 (4.1468)
			$ u_{10}$	0.1010	0.2117 (2.1966)
			$ u_{12}$	0.1478	0.2178(1.0857)

TABLE S17: The inter-state coupling between $\tilde{A}^2 B_2 - \tilde{C}^2 B_1$ and $\tilde{B}^2 A_2 - \tilde{C}^2 B_1$ electronic states of the isomer-I. The data are presented in eV.

TABLE S18: Normal modes combination, size of the primitive basis and single partition function (SPF) for the coupled and uncoupled full dimension and reduced dimension nuclear dynamics (time-dependent and time-independent) of C_2B_5 using MCTDH [2]

Combination of	Primitive basis	SPF	Figure
normal modes			
ν_1	16	[10, 10, 10, 10, 10]	Fig. 4 (a,b)
ν_3, ν_4, ν_6	12,10,10	[8,8,8,8,8]	Fig. S1
ν_2,ν_5	6, 6	[4, 4, 4, 4, 4]	Fig. S5 (a,b), black spectra
$ u_1, \nu_9, \nu_{10}$	16,16,14	[10, 10, 10, 10]	Fig. 5 (a-d)
$ u_3, \nu_4, \nu_6, \nu_{12}, \nu_{14}$	12,10,10,10,10	[8,8,8,8]	Fig. 6 (C_{2v})
$\nu_2, \nu_5, \nu_7, \nu_8, \nu_{11}, \nu_{13}, \nu_{15}$	6,6,4,8,4,4,6	[4, 4, 4, 4]	Fig. S5 (a,b) [red spectra]
ν_1,ν_9,ν_{10}	16, 16, 14	[10, 10, 10, 10, 10]	
$\nu_3,\nu_4,\nu_6,\nu_{12},\nu_{14}$	12,10,10,10,10	[8,8,8,8,8]	Fig. S4
$\nu_2, \nu_5, \nu_7, \nu_8, \nu_{11}, \nu_{13}, \nu_{15}$	6,6,4,8,4,4,6	[4, 4, 4, 4, 4]	
$ u_1$	11	[8,8,8,8,8]	Fig. 4 (b, c)
$ u_4$	12	[9, 9, 9, 9, 9]	Fig. S2
ν_2,ν_3,ν_5,ν_6	8,8,8,9	[5, 5, 5, 5, 5]	Fig. S3, green spectra
$ u_1, \nu_4, \nu_6$	18,16,12	[10,10,10,10,10]	Fig. S3, red spectra
ν_2, ν_3, ν_5	10, 10, 10	[8,8,8,8,8]	Fig. S5 (c-f), black spectra
ν_7, ν_8, ν_{11}	8, 8, 8	[6,6,6,6,6]	
ν_9,ν_{10}	6, 6	[4, 4, 4, 4, 4]	
$ u_1, \nu_4, \nu_6$	18,16,12	[10,10,10,10,10]	Fig. 5 (e-f)
$\nu_2,\nu_3,\nu_5,\nu_{14},\nu_{15}$	10,10,10,10,10	[8,8,8,8,8]	Fig. 6 (C _s), blue spectra
ν_7,ν_8,ν_{11}	8, 8, 8	[6,6,6,6,6]	Fig. S5 (c-f), black spectra

 $6,\,6,\,4,\,4$

 $\nu_9,\,\nu_{10},\,\nu_{12},\,\nu_{13}$

[4, 4, 4, 4, 4]

FIG. S1: The uncoupled time-dependent and time-independent spectra of the first five electronic states (\widetilde{X} in panel a, \widetilde{A} in panel b, \widetilde{B} in panel c, \widetilde{C} in panel d and \widetilde{D} in panel e) of isomer-I are shown here. The vibronic energies obtained from the time-independent calculation are shown in red stick lines, while the spectrum envelope obtained from the convolution of these energies is shown in green dashed line and the spectrum envelope obtained from the time-dependent calculation is shown in blue dotted line in each panel.

FIG. S2: The uncoupled time-dependent and time-independent spectra of the first five electronic states (\widetilde{X} in panel a, \widetilde{A} in panel b, \widetilde{B} in panel c, \widetilde{C} in panel d and \widetilde{D} in panel e) of isomer-II are shown here. All calculations are performed including lowest six frequency totally symmetric vibrational modes (ν_1 - ν_6). The vibronic energies obtained from time-independent calculation are shown in red stick lines, while the spectrum envelope obtained from the convolution of these energies is shown in green dashed line and the spectrum envelope obtained from the time-dependent calculation is shown in blue dotted

FIG. S3: The comparison between 6-modes and 11-modes uncoupled time-dependent calculations of the first five electronic states (\widetilde{X} in panel a, \widetilde{A} in panel b, \widetilde{B} in panel c, \widetilde{C} in panel d and \widetilde{D} in panel e) of isomer-II is shown here.

FIG. S4: Overall comparison of the five uncoupled state's spectra of isomer-I obtained from time-independent nuclear dynamics simulations with the available experimental recording [1].

FIG. S5: The comparison between the coupled and uncoupled spectrum obtained from time-dependent calculations of \widetilde{X} and \widetilde{D} states of isomer-I are shown in panel a and b, while the same of \widetilde{X} , \widetilde{A} , \widetilde{C} and \widetilde{D} states of isomer-II are shown in panels c, d, e and f, respectively.

- B. B. Averkiev, D. Y. Zubarev, L. -M. Wang, W. Huang, L. S. Wang and A. I. Boldyrev, J. Am. Chem. Soc., 2008, 130, 9248–9250.
- [2] G. A. Worth, M. H. Beck, A. Jäckle and H. -D. Meyer, The mctdh package, Version 8.4, 2017, University of Heidelberg, Germany. See:http://mctdh.uni-hd.de.