Supporting Information

Theoretical Insights into Non-Oxidative Propane Dehydrogenation over $\mathrm{Fe}_{3} \mathbf{C}$

Peng Wang ${ }^{a}$ and Thomas P. Senftle ${ }^{a, *}$
${ }^{\text {a }}$ Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005

* tsenftle@rice.edu

Data availability: All final structures and scripts used to generate the plots are supplied in an online repository at https://github.com/tsenftle/PDH-Fe3C.

1 Computational details

The k-points mesh and number of frozen atoms and total atoms in different models are summarized in Table S 1.

Table S1. K-points and frozen atoms in different structures

Structure	k-points mesh	frozen/total (Fe or Pt)	Frozen/total (C)
Fe, bulk	$8 \times 8 \times 8$	-	-
$\mathrm{Fe}_{3} \mathrm{C}$, bulk	$4 \times 4 \times 4$	-	-
Pt, bulk	$9 \times 9 \times 9$	-	-
$\mathrm{Fe}{ }_{3} \mathrm{C}(001)$	$3 \times 3 \times 1$	-	-
$\mathrm{Fe}_{3} \mathrm{C}(010)$	$3 \times 3 \times 1$	-	-
$\mathrm{Fe}_{3} \mathrm{C}(011)$	$3 \times 3 \times 1$	-	-
$\mathrm{Fe}(110)-(2 \times 2)$	$4 \times 3 \times 1$	$16 / 40$	-
$\mathrm{Fe}(110)-(4 \times 3)$	$2 \times 2 \times 1$	$24 / 72$	
$\mathrm{Pt}(111)-(2 \times 2)$	$3 \times 4 \times 1$	$16 / 48$	-
$\mathrm{Fe}_{3} \mathrm{C}(010)$-CR- (2×2)	$1 \times 1 \times 1$	$16 / 56$	$8 / 24$
$\mathrm{Fe}_{3} \mathrm{C}(001)-\mathrm{ST}-1-(2 \times 1)$	$2 \times 2 \times 1$	$12 / 48$	$4 / 16$
$\mathrm{Fe}_{3} \mathrm{C}(001)$-CR- (2×1)	$2 \times 2 \times 1$	$12 / 48$	$4 / 16$
$\mathrm{Fe}_{3} \mathrm{C}(011)-$ ST- $1-(2 \times 1)$	$2 \times 3 \times 1$	$12 / 48$	$4 / 16$
$\mathrm{Fe}_{3} \mathrm{C}(011)$-CR- $3-(2 \times 1)$	$2 \times 3 \times 1$	$16 / 44$	$4 / 16$

The adsorption of $\mathrm{C}_{3} \mathrm{H}_{\mathrm{x}}(\mathrm{x}=4,5,6,7,8)$ on $\mathrm{Fe}_{3} \mathrm{C}$ surfaces was systematically evaluated on multiple adsorption sites for each surface. These sites are summarized in Table S2, which specifies the surface Fe atoms bonded to the hydrocarbon. The number in parenthesis is the formation energy of the intermediate referenced to $\mathrm{C}_{3} \mathrm{H}_{8}$ and H_{2}.

Table S2. Tested adsorption sites of each surface

Surface	Geometry	Tested adsorption site (number of Fe atoms adsorbed with intermediates in relaxed structures)			
		$\mathrm{C}_{3} \mathrm{H}_{4}{ }^{\text {* }}$	$\mathrm{C}_{3} \mathrm{H}_{5}{ }^{*}$	$\mathrm{C}_{3} \mathrm{H}_{6}{ }^{*}$	$\mathrm{C}_{3} \mathrm{H}_{7}{ }^{*}$
$\mathrm{Fe}(110)$		$\begin{aligned} & 2-3-4-6 \\ & {[0.208]} \end{aligned}$	$\begin{aligned} & 2-3-4-6 \\ & {[0.435]} \end{aligned}$	$\begin{gathered} 2-3-6 \\ {[0.129]} \\ \mathbf{3 - 6 - 4} \\ {[\mathbf{0 . 0 9 9}]} \end{gathered}$	$\begin{gathered} 3-6-7 \\ {[-0.076],} \\ \mathbf{2 - 3 - 6} \\ {[-\mathbf{0 . 2 1 1}],} \\ 2-4-6 \\ {[-0.123]} \end{gathered}$
$\mathrm{Fe}_{3} \mathrm{C}(001)$-ST-1	$\begin{array}{llllll} 0 & 10 & 20 & 30 & 0 & 0 \\ & 40 & 50 & 0 \\ 0 & 10 & 80 & 0 & 0 \end{array}$	$\begin{gathered} 1-2-4-5-6 \\ {[0.927]} \\ \mathbf{1 - 4 - 5 - 7} \\ {[\mathbf{0 . 6 0 2}]} \end{gathered}$	$\begin{gathered} 4-5-7-6 \\ {[0.772],} \\ \mathbf{1 - 4 - 7} \\ {[\mathbf{0 . 5 5 0}]} \\ 4-5-7 \\ {[0.630]} \end{gathered}$	$\begin{gathered} 4-5-7-6 \\ {[0.414]} \\ \mathbf{1 - 4 - 7} \\ \text { [-0.269], } \\ 1-4[-0.080] \end{gathered}$	$\begin{gathered} 1-4 \\ {[-0.364]} \\ 4-7[-0.25] \end{gathered}$
$\mathrm{Fe}_{3} \mathrm{C}(011)$-ST-1		$\begin{gathered} 1-2[1.855], \\ \mathbf{5 - 2 - 3 - 4} \\ {[1.781]} \end{gathered}$	$\begin{gathered} 1-2[1.490] \\ \mathbf{5 - 2 - 3 - 4} \\ {[\mathbf{0 . 9 9 7}]} \end{gathered}$	$\begin{gathered} \hline 1-2 \text { [0.136], } \\ \mathbf{5 - 2 - 3 - 4} \\ {[\mathbf{0 . 0 7 2]}, 2-} \\ 3-4[0.265], \\ 1-2-7-8 \\ {[0.604], 1-} \\ 2-7[0.488], \\ 6-1-2 \\ {[0.614]} \end{gathered}$	$\begin{gathered} 2[0.296], \\ \mathbf{1 - 2}[-0.155] \end{gathered}$

$\mathrm{Fe}_{3} \mathrm{C}(010)$-CR	$\begin{array}{c:ccccc} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 20 & 30 & 0 & 0 & 0 \\ 0 & 40 & 0 & 0 & 0 & 1 \\ \hdashline 0 & 0 & 0 & 0 & 0 \end{array}$	2-3 [2.379]	2-3 [1.287]	2-3 [0.400]	2 [0.309]
$\mathrm{Fe}_{3} \mathrm{C}(001)$-CR	$\begin{array}{cccccc} 1 & 0 & & 0 & 0 \\ \hdashline & 10 & 20 & 0 & C \\ 0 & 40 & 0 & 0 & \\ 0 & 50 & 60 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{array}$	$\begin{gathered} 3-4-5-6 \\ {[1.580]} \\ 1-3-4-5 \\ {[1.595]} \end{gathered}$	$\begin{gathered} 4 \text { [1.981], } \\ 3-4-5 \\ {[1.523],} \\ \mathbf{4 - 5 - 6} \\ {[\mathbf{1 . 2 6 1]}} \end{gathered}$	$\begin{gathered} 4 \text { [0.521], } \\ 5 \text { [1.213] } \end{gathered}$	4 [0.240]
$\mathrm{Fe}_{3} \mathrm{C}(011)$-CR-3	0 0 0 0 C 0 0 0 0 0 0 0 10 20 40 0 0 0 0 0 0 C 0 0 0 0 0	$\begin{gathered} \text { 1-3-2 } \\ {[\mathbf{1 . 3 8 0}],} \\ 3-2[1.950] \end{gathered}$	$\begin{gathered} 3-2[1.027], \\ \mathbf{1 - 3 - 2} \\ {[\mathbf{0 . 8 9 2}],} \\ 1-3[1.241] \end{gathered}$	$\begin{gathered} \mathbf{1 - 3 - 2} \\ {[\mathbf{0 . 4 6 6}],} \\ 3-2[0.602] \end{gathered}$	$\begin{gathered} 3[0.159] \\ \mathbf{1}[\mathbf{0 . 0 9 0}] \end{gathered}$

* The most stable site is bold
** The formation energy referring to $\mathrm{C}_{3} \mathrm{H}_{8}$ and H_{2} are shown in square brackets in eV

The charges of either C atom or PO_{4} group from Bader charge analysis are summarized in Table S3 and Table S4, where e is the positive elementary charge.

Table S3. Bader charge of C atom on Fe (110) surface

Charge of carbon (e)	Pristine	With Phosphate
1 carbon	-1.30	-1.21
2 carbon	$-1.32 /-1.32$	$-1.17 /-0.96$

Table S4. Bader charge of PO_{4} group on $\mathrm{Fe}(110)$ surface

Charge of PO_{4} group (e)	Phosphate
No carbon	-2.00
1 carbon	-1.97
2 carbon	-1.93

The comparison of the formation energy of 1-propyl and 2-propl referenced to $\mathrm{C}_{3} \mathrm{H}_{8}$ and H_{2} on each surface is reported in Table S5.

Table S5. Comparison of formation energy of 1-propyl and 2-propyl from $\mathrm{C}_{3} \mathrm{H}_{8}$ and H_{2}

Surface	1-propyl /eV	2-propyl /eV	difference $/ \mathrm{eV}$
$001-\mathrm{CR}$	0.24	0.34	-0.10
$001-\mathrm{ST}-1$	-0.36	-0.15	-0.22
$010-\mathrm{CR}$	0.31	0.30	0.00
$011-\mathrm{CR}-3$	0.16	0.09	0.07
011-ST-1	-0.16	0.07	-0.22
$\mathrm{Fe}(110)$	-0.19	0.14	-0.33

2 Additional figures

Figure S1. Comparison of the reaction energy for breaking the $\mathrm{C}-\mathrm{H}$ bond versus the $\mathrm{C}-\mathrm{C}$ bond of $\mathrm{C}_{3} \mathrm{H}_{7}$ on each surface.

Figure S2. Comparison of the reaction energy for breaking the $\mathrm{C}-\mathrm{H}$ bond, the $\mathrm{C}=\mathrm{C}$ bond, and the $\mathrm{C}-\mathrm{C}$ bond of $\mathrm{C}_{3} \mathrm{H}_{6}$ on each surface.

Figure S3. Phase diagrams of carbon coverage on a) $\mathrm{Fe}(110)$ with $\mathrm{H}_{2} \mathrm{PO}_{4}$ adsorbed and b) $\mathrm{Fe}(110)$ with HPO_{4} adsorbed. The solid line is the surface without carbon and is taken as the reference. The dashed line is the surface with one carbon atom per (2×2) cell. The dash-dotted line is the surface with two carbon atoms per (2×2) cell. The dotted vertical line is the reaction condition, which is at $873.15 \mathrm{~K}, 0.01 \mathrm{~atm} \mathrm{H}_{2}$, and $0.05 \mathrm{~atm} \mathrm{C}_{3} \mathrm{H}_{8}$. The light gray area represents the stable region of $1 / 8$ coverage of carbon and the dark gray area is for $1 / 4$ coverage of carbon.

Figure S4. Density of states (DOS) of bulk $\mathrm{Fe}_{3} \mathrm{C}$. The blue and black line represent two different spin states. The vertical line is the Fermi level.

3 Detailed geometries

The detailed adsorption geometries of the most stable configuration along with the transition states on the surfaces of $\mathrm{Fe}, \mathrm{Fe}_{3} \mathrm{C}$, and Pt are shown with Figure S5-S11.

Figure S5. Adsorption configurations and transition state structures on $\mathrm{Fe}(110)$. The top views are shown as insets on top of each side view. The unit cell is shown with black line. Brown: Fe; Gray: C; White: H. The breaking bonds in transition states are labeled with green dashed lines with their bond lengths.

Figure S6. Adsorption configurations and transition state structures on $\mathrm{Fe}_{3} \mathrm{C}(001)$-ST-1.

Figure S7. Adsorption configurations and transition state structures on $\mathrm{Fe}_{3} \mathrm{C}(011)$-ST-1.

Figure S8. Adsorption configurations and transition state structures on $\mathrm{Fe}_{3} \mathrm{C}(010)$-CR.

Figure S9. Adsorption configurations and transition state structures on $\mathrm{Fe}_{3} \mathrm{C}(001)$-CR.

Figure S10. Adsorption configurations and transition state structures on $\mathrm{Fe}_{3} \mathrm{C}(011)$-CR-3.

Figure S11. Adsorption configurations and transition state structures on $\operatorname{Pt}(111)$.

All final structures of stable adsorption and transition states in VASP format, and the script used to generate the plot in Figure 2 are supplied online at https://github.com/tsenftle/PDH-Fe3C.

4 Data in figures

The data needed to generate the plot in Figure 2 are shown in Table S6. Through the equations discussed in the main text, only the number of atoms and the total energies of the slabs is needed to determine their relative stability. The total DFT energy of $\mathrm{Fe}_{3} \mathrm{C}$ per formula unit is -34.824 eV . The free energies of propane and hydrogen at 873.15 K and 1 atm were -57.010 eV and -7.660 eV , respectively.

Table S6. The slab models and corresponding energies used in Figure 2

Terminations	Number of Fe	Number of C	E (eV)	Area (\AA^{2})
(011)-ST-1	48	16	-543.072	40.009
(011)-CR-1	44	16	-506.633	40.009
(011)-IR-1	44	12	-469.516	40.009
(011)-IR-2	40	12	-436.389	40.009
(011)-ST-2	36	12	-402.318	40.009
(011)-CR-2	32	12	-367.605	40.009
(011)-CR-3	28	12	-333.903	40.009
(011)-IR-3	28	8	-298.340	40.009
(001)-CR	42	16	-493.609	33.240
(001)-ST-1	42	14	-475.885	33.240
(001)-IR	42	12	-456.102	33.240
(001)-ST-2	36	12	-403.946	33.240
(010)-ST	48	16	-548.679	22.267
(010)-CR	44	16	-516.233	22.267
(010)-IR	40	12	-442.862	22.267

All the energies of adsorption configurations and transition states used to generate Figure 7 and Figure 8 are summarized in Table S7.

Table S7. DFT and Gibbs free energies of intermediates adsorption and transition states

surface	Transition states / Adsorbed species	DFT energy E (eV)	Gibbs free energy $\mathrm{G}(\mathrm{eV})$	Imaginary Frequency $\left(\mathrm{cm}^{-1}\right)$
Fe	$\mathrm{C}_{3} \mathrm{H}_{8}{ }^{*}$	-382.231	-380.705	-
	$\mathrm{TS}\left(\mathrm{C}_{3} \mathrm{H}_{8}{ }^{*}-\mathrm{C}_{3} \mathrm{H}_{7}{ }^{*}\right)$	-381.621	-380.339	872.987
	$\mathrm{C}_{3} \mathrm{H}_{7}{ }^{*}$	-378.767	-377.409	-
	$\mathrm{TS}\left(\mathrm{C}_{3} \mathrm{H}_{7}{ }^{*}-\mathrm{C}_{3} \mathrm{H}_{6}{ }^{*}\right)$	-378.689	-377.380	763.623
	$\mathrm{C}_{3} \mathrm{H}_{6}{ }^{*}$	-375.077	-373.981	-
	$\mathrm{TS}\left(\mathrm{C}_{3} \mathrm{H}_{6}{ }^{*}-\mathrm{C}_{3} \mathrm{H}_{5}{ }^{*}\right)$	-374.624	-373.641	964.418
	$\mathrm{C}_{3} \mathrm{H}_{5}{ }^{*}$	-371.349	-370.476	-
	$\mathrm{TS}\left(\mathrm{C}_{3} \mathrm{H}_{5}{ }^{*}-\mathrm{C}_{3} \mathrm{H}_{4}{ }^{*}\right)$	-371.254	-370.335	835.381
	$\mathrm{C}_{3} \mathrm{H}_{4}{ }^{*}$	-368.190	-367.478	-
	H^{*}	-329.053	-329.029	-
	Clean surface	-324.869	-	-
$\mathrm{Fe}_{3} \mathrm{C}(001)$-ST-1	$\mathrm{C}_{3} \mathrm{H}_{8}{ }^{*}$	-590.313	-588.789	-
	$\mathrm{TS}\left(\mathrm{C}_{3} \mathrm{H}_{8}{ }^{*}-\mathrm{C}_{3} \mathrm{H}_{7}{ }^{*}\right)$	-589.729	-588.136	862.987
	$\mathrm{C}_{3} \mathrm{H}_{7}{ }^{*}$	-586.728	-585.398	-
	$\mathrm{TS}\left(\mathrm{C}_{3} \mathrm{H}_{7}{ }^{*}-\mathrm{C}_{3} \mathrm{H}_{6}{ }^{*}\right)$	-586.693	-585.394	712.511
	$\mathrm{C}_{3} \mathrm{H}_{6}{ }^{*}$	-583.249	-582.082	-
	$\mathrm{TS}\left(\mathrm{C}_{3} \mathrm{H}_{6}{ }^{*}-\mathrm{C}_{3} \mathrm{H}_{5}{ }^{*}\right)$	-582.393	-581.329	733.047
	$\mathrm{C}_{3} \mathrm{H}_{5}{ }^{*}$	-579.046	-578.154	-
	$\mathrm{TS}\left(\mathrm{C}_{3} \mathrm{H}_{5}{ }^{*}-\mathrm{C}_{3} \mathrm{H}_{4}{ }^{*}\right)$	-578.778	-578.006	741.219
	$\mathrm{C}_{3} \mathrm{H}_{4}{ }^{*}$	-575.612	-574.892	-
	H^{*}	-536.840	-536.712	-
	Clean surface	-532.654	-	-
$\mathrm{Fe}_{3} \mathrm{C}(011)$-ST-1	$\mathrm{C}_{3} \mathrm{H}_{8}{ }^{*}$	-586.081	-584.673	-
	$\mathrm{TS}\left(\mathrm{C}_{3} \mathrm{H}_{8}{ }^{*} \mathrm{C}_{3} \mathrm{H}_{7}{ }^{*}\right)$	-585.531	-584.104	720.044
	$\mathrm{C}_{3} \mathrm{H}_{7}{ }^{*}$	-582.471	-581.186	-
	$\mathrm{TS}\left(\mathrm{C}_{3} \mathrm{H}_{7}{ }^{*}-\mathrm{C}_{3} \mathrm{H}_{6}{ }^{*}\right)$	-582.243	-580.936	842.665

	$\mathrm{C}_{3} \mathrm{H}_{6}{ }^{*}$	-578.861	-577.679	-
	$\mathrm{TS}\left(\mathrm{C}_{3} \mathrm{H}_{6}{ }^{*}-\mathrm{C}_{3} \mathrm{H}_{5}{ }^{*}\right)$	-577.913	-576.879	650.353
	$\mathrm{C}_{3} \mathrm{H}_{5}{ }^{*}$	-574.552	-573.611	-
	$\mathrm{TS}\left(\mathrm{C}_{3} \mathrm{H}_{5}{ }^{*}-\mathrm{C}_{3} \mathrm{H}_{4}{ }^{*}\right)$	-573.616	-572.810	650.600
	$\mathrm{C}_{3} \mathrm{H}_{4}{ }^{\text {\% }}$	-570.385	-569.762	-
	H^{*}	-532.643	-532.543	-
	Clean surface	-528.606	-	-
$\mathrm{Fe}_{3} \mathrm{C}(010)$-CR	$\mathrm{C}_{3} \mathrm{H}_{8}{ }^{*}$	-725.917	-724.397	-
	$\mathrm{TS}\left(\mathrm{C}_{3} \mathrm{H}_{8}{ }^{*}-\mathrm{C}_{3} \mathrm{H}_{7}{ }^{*}\right)$	-725.162	-723.728	837.558
	$\mathrm{C}_{3} \mathrm{H}_{7}{ }^{*}$	-721.928	-720.546	-
	$\mathrm{TS}\left(\mathrm{C}_{3} \mathrm{H}_{7}{ }^{*}-\mathrm{C}_{3} \mathrm{H}_{6}{ }^{*}\right)$	-721.833	-720.485	699.207
	$\mathrm{C}_{3} \mathrm{H}_{6}$ *	-718.454	-717.320	-
	$\mathrm{TS}\left(\mathrm{C}_{3} \mathrm{H}_{6}{ }^{*}-\mathrm{C}_{3} \mathrm{H}_{5}{ }^{*}\right)$	-717.663	-716.636	650.996
	$\mathrm{C}_{3} \mathrm{H}_{5}{ }^{*}$	-714.184	-713.251	-
	$\mathrm{TS}\left(\mathrm{C}_{3} \mathrm{H}_{5}{ }^{*}-\mathrm{C}_{3} \mathrm{H}_{4}{ }^{*}\right)$	-713.060	-712.327	654.533
	$\mathrm{C}_{3} \mathrm{H}_{4}{ }^{*}$	-709.709	-709.183	-
	H^{*}	-672.098	-671.999	-
	Clean surface	-668.528	-	-
$\mathrm{Fe}_{3} \mathrm{C}(001)$-CR	$\mathrm{C}_{3} \mathrm{H}_{8}{ }^{*}$	-588.945	-587.412	-
	$\mathrm{TS}\left(\mathrm{C}_{3} \mathrm{H}_{8}{ }^{*}-\mathrm{C}_{3} \mathrm{H}_{7}{ }^{*}\right)$	-588.073	-586.383	819.175
	$\mathrm{C}_{3} \mathrm{H}_{7}{ }^{*}$	-584.841	-583.440	-
	$\mathrm{TS}\left(\mathrm{C}_{3} \mathrm{H}_{7}{ }^{*}-\mathrm{C}_{3} \mathrm{H}_{6}{ }^{*}\right)$	-584.803	-583.432	716.748
	$\mathrm{C}_{3} \mathrm{H}_{6}{ }^{*}$	-581.177	-580.001	-
	$\mathrm{TS}\left(\mathrm{C}_{3} \mathrm{H}_{6}{ }^{*}-\mathrm{C}_{3} \mathrm{H}_{5}{ }^{*}\right)$	-580.055	-578.931	900.835
	$\mathrm{C}_{3} \mathrm{H}_{5}{ }^{*}$	-577.053	-576.049	-
	$\mathrm{TS}\left(\mathrm{C}_{3} \mathrm{H}_{5}{ }^{*}-\mathrm{C}_{3} \mathrm{H}_{4}{ }^{*}\right)$	-576.205	-575.272	245.408
	$\mathrm{C}_{3} \mathrm{H}_{4}{ }^{*}$	-573.351	-572.581	-
	H^{*}	-535.534	-535.397	-
	Clean surface	-531.372	-	-
$\mathrm{Fe}_{3} \mathrm{C}(011)$-CR-3	$\mathrm{C}_{3} \mathrm{H}_{8}{ }^{*}$	-549.371	-547.833	-
	$\mathrm{TS}\left(\mathrm{C}_{3} \mathrm{H}_{8}{ }^{*}-\mathrm{C}_{3} \mathrm{H}_{7}{ }^{*}\right)$	-548.601	-546.958	659.618
	$\mathrm{C}_{3} \mathrm{H}_{7}{ }^{*}$	-545.112	-543.810	-

	$\mathrm{TS}\left(\mathrm{C}_{3} \mathrm{H}_{7}{ }^{*}-\mathrm{C}_{3} \mathrm{H}_{6}{ }^{*}\right)$	-544.954	-543.607	1028.981
	$\mathrm{C}_{3} \mathrm{H}_{6}{ }^{*}$	-541.354	-540.147	-
	$\mathrm{TS}\left(\mathrm{C}_{3} \mathrm{H}_{6}{ }^{*}-\mathrm{C}_{3} \mathrm{H}_{5}{ }^{*}\right)$	-540.750	-539.581	393.150
	$\mathrm{C}_{3} \mathrm{H}_{5}{ }^{*}$	-537.544	-536.528	-
	$\mathrm{TS}\left(\mathrm{C}_{3} \mathrm{H}_{5}{ }^{*}-\mathrm{C}_{3} \mathrm{H}_{4}{ }^{*}\right)$	-536.926	-536.038	654.454
	$\mathrm{C}_{3} \mathrm{H}_{4}{ }^{*}$	-533.673	-532.886	-
	H^{*}	-495.477	-495.356	-
	Clean surface	-491.493	-	-
$\operatorname{Pt}(111)$	$\mathrm{C}_{3} \mathrm{H}_{8}{ }^{\text {* }}$	-354.147	-352.427	-
	$\mathrm{TS}\left(\mathrm{C}_{3} \mathrm{H}_{8}{ }^{*}-\mathrm{C}_{3} \mathrm{H}_{7}{ }^{*}\right)$	-353.672	-352.256	885.778
	$\mathrm{C}_{3} \mathrm{H}_{7}{ }^{*}$	-350.419	-349.141	-
	$\mathrm{C}_{3} \mathrm{H}_{6}$ *	-347.096	-345.809	-
	$\mathrm{TS}\left(\mathrm{C}_{3} \mathrm{H}_{6}{ }^{*}-\mathrm{C}_{3} \mathrm{H}_{5}{ }^{*}\right)$	-346.341	-345.126	709.733
	$\mathrm{C}_{3} \mathrm{H}_{5}{ }^{*}$	-343.162	-342.078	-
	H^{*}	-300.364	-329.029	-
	Clean surface	-296.412	-	-

