## **Electronic Supplementary Information**

Designed Ag-decorated Mn:ZnO nanocomposite: Facile synthesis, enhanced

visible light absorption and photogenic carrier separation

Jing Li,<sup>a</sup> Huan Yuan<sup>a</sup>, Qiuping Zhang<sup>a</sup>, Kaiyi Luo,<sup>a</sup> Yutong Liu<sup>a</sup>, Wenyu Hu<sup>a</sup>, Ming Xu<sup>a\*</sup>, Shuyan Xu,<sup>b</sup> a College of Electrical &Information Engineering & Key Lab of Information Materials of Sichuan Province, Southwest University for Nationalities, Chengdu 610041, China. hsuming\_2001@aliyun.com (M. Xu)

b Plasma Sources and Application Center/Space Propulsion Centre Singapore, NIE, and Institute of Advanced Studies, Nanyang Technological University, 637616, Singapore.



**Figure S1.** (a) XRD patterns of Mn-doped ZnO with different Mn content in the range 20-80°. (b) The UVvis diffuse reflectance spectrum of as-prepared Mn-doped ZnO with different Mn content. (c) Photodegradation of MB with as-synthetized Mn doped ZnO with different Mn content under simulated sunlight irradiation.

The Mn-doped ZnO NPs with different Mn concentrations were successfully produced by the facile polymer network gel method. Obtained Mn-doped ZnO were characterized by X-Ray diffraction (XRD) to investigate the phases and components of as-prepared series of catalysts, as shown in **Figure S1a** and **Table S2**. With the increase of Mn concentration, the crystal quality of catalyst gradually deteriorate due to the lattice disorder as the diverse ionic radius. The UV-vis diffuse reflection spectrum of as-prepared samples is provided in **Figure S1b**. And the photocatalytic properties of the as-prepared samples were evaluated by the degradation of MB aqueous solutions upon exposure to the simulated sunlight irradiation is shown in **Figure S1c**. The introduction of manganese obviously enhanced the visible absorption of ZnO but does not improve its photocatalytic performance, the highest catalytic activity of Mn-doped ZnO NPs achieves with the 1mol% Mn concentration, which is similar to Yadollah's report<sup>[S1]</sup>. In addition, it was found in our previous study that Ag-decorated ZnO photocatalyst had the best activity removing organic pollutants such as methylene blue (MB), methyl orange (MO) and rhodamine B (RhB) in aqueous solution when the Ag modification amount was 3 mol%<sup>[S2,28]</sup>. Therefore, the content of Ag deposition used by a facile polymer network gel method this paper kept 3mol%.

**Table S1** The main reagent dosages used in synthetic processes of ZnO, Mn:ZnO, Ag/ZnO andMn:ZnO/Ag composites

| samples   | Zn(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O/g | Mn(NO <sub>3</sub> ) <sub>2</sub> ·4H <sub>2</sub> O/g | AgNO <sub>3</sub> /g |
|-----------|--------------------------------------------------------|--------------------------------------------------------|----------------------|
| ZnO       | 6.0099                                                 | NONE                                                   | NONE                 |
| Mn:ZnO    | 5.9498                                                 | 0.0512                                                 | NONE                 |
| Ag/ZnO    | 5.8296                                                 | NONE                                                   | 0.1021               |
| Mn:ZnO/Ag | 5.7695                                                 | 0.0512                                                 | 0.1021               |

Materials and reagents required for this experiment, including  $Zn(NO_3)_2 \cdot 6H_2O_3$ , AgNO<sub>3</sub>, Mn(NO<sub>3</sub>)<sub>2</sub>·4H<sub>2</sub>O, glucosum anhydricum, tartaric acid, acrylamide, N, N'-methylene diacrylamide. All reagents were of analytical grade and used without further purification.



Figure S2. The high-resolution Mn 2p XPS spectra.



Figure S3. The color transformation of as-synthesized samples.



Figure S4. Particle size distribution of pure ZnO, Mn:ZnO, Ag/ZnO and Mn:ZnO/Ag NPs.

| Table S2. Average particl | e size of pure ZnO | , Mn:ZnO, Ag/ZnC | and Mn:ZnO/Ag NPs. |
|---------------------------|--------------------|------------------|--------------------|
|                           |                    |                  |                    |

| Samples                    | ZnO   | Mn:ZnO | Ag/ZnO | Mn:ZnO/Ag |
|----------------------------|-------|--------|--------|-----------|
| Average particle size (nm) | 90.42 | 69.31  | 101.22 | 129.83    |

## References

[S1] A Yadollah, A Abdul, Z Zulkarnain, Y Nor, Synthesis and Characterization of Manganese Doped ZnO Nanoparticles, Int. J. Basic Appl. 11 (2011) 1361.

[S2] Y H Lu, Xu M, Xu L X, Enhanced ultraviolet photocatalytic activity of Ag/ZnO nanoparticles synthesized by modifified polymer-network gel method, Journal of Nanoparticle Research. 17 (2015) 350.