Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2020

Supporting information

First-Principles Theory Study on Dry Reforming of Methane over Perfect and Boron Vacancies of h-BN Sheets Supported Ni Catalysts

Yan Zhang, Yi-Fan Yao, Yuan-Yuan Qiao, Gui-Chang Wang*

(Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and the Tianjin key Lab and Molecule-based Material Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China)

*Corresponding author: Gui-Chang Wang. E-mail: wangguichang@nankai.edu.cn

Telephone: +86-22-23502458 (O) Fax: +86-22-23502458

Table	S1	Standard	entropy of	f gas	phase	material	at 973	.15	Κ

S°(J/mol*K) ^[2]	
245.61	
267.82	
165.39	
233.63	
231.62	
	S°(J/mol*K) ^[2] 245.61 267.82 165.39 233.63 231.62

Table S2 Calculated energy barriers (*Ea*) and reaction energy (ΔE) for all the elementary reactions involved in dry reforming of methane.

		CH₄*→CH₃*+H*		CO ₂ *→CO*+O*	
	Catalyst	$E_a(eV)$	ΔE (eV)	E_a (eV)	$\Delta E(eV)$
1	Ni ₁ /h-BN	0.46	0.42	2.11	1.74
2	Ni ₁ /h-BN-B-D	1.48	1.30	2.78	2.61
3	Ni ₂ /h-BN	0.11	-0.04	1.11	0.22
4	Ni ₂ /h-BN-B-D	0.36	0.35	1.42	0.24

Table S3 Adsorption energy of key species involved in DRM over Ni₂/h-BN, Ni₂/h-BN-B-D and Ni(111) (eV).

	Ni ₂ /h-BN	Ni ₂ /h-BN-B-D	Ni(111) ^[1]
CH ₄	-0.58	-0.84	-0.02
CH ₃	-3.74	-2.63	-1.92
CH ₂	-4.29	-3.86	-4.01
СН	-5.11	-4.84	-6.43
С	-6.40	-6.02	-6.78
CH ₃ O	-3.95	-2.55	-2.36
CH ₂ O	-2.67	-1.14	-0.75
СНО	-4.05	-2.90	-2.26
CO ₂	-2.05	-1.57	-0.02
CO	-3.45	-2.48	-1.92
СООН	-3.26	-2.83	-2.26
ОН	-5.19	-3.82	-3.42
0	-6.33	-5.38	-5.67
Н	-3.58	-2.67	-2.81
H ₂ O	-0.57	-1.01	-0.29

Fig.S1 Partial density of state (PDOS) of Ni₂ absorbed on perfect h-BN surface (red) and B-defect h-BN surface (black).All the Fermi levels are shifed to 0.0 eV.

Fig. S2 Single Ni adsorption configuration on B-defected (left) and prefect (right) h-BN

Fig. S3. IS and TS configurations of the CO₂ direct activation on Ni₂/h-BN In the presence of CH₃.

(a) CH₄

(b) CH₃

(c) CH₂

(d) CH

(e) C

Fig. S4 Most stable adsorption structures for the intermediates on Ni₂/h-BN-B-D. The red, white and gray balls denote the O,

H and C atoms, respectively.

Fig. S5 Most stable adsorption structures for the intermediates on Ni₂/h-BN. The red, white and gray balls denote the O, H

and C atoms, respectively.

Fig.S6 Most stable adsorption structures and adsorption energy of CH_4 and CO_2 over h-BN in DRM on Ni2/h-BN-B-D(a,b) and Ni2/h-BN(c,d). The red, white and gray balls denote the O, H and C atoms, respectively.

Fig.S7 TSs configuration in DRM on Ni₂/h-BN-B-D and Ni₂/h-BN. The red, white and gray balls denote the O, H and C atoms, respectively.

Fig.S8 Top and side view of Ni4 adsorption configuration on prefect h-BN.

Reference

[1] W. K. Yuan, Y.A. Zhu, Catalysis Today. 2009, 148, 260–267.

[2] Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998,

1-1951.