First-principles view of the interaction between Li and Bi₄Ge₃O₁₂ anode

HongXian Liu¹, Jassiel R. Rodriguez², Vilas G. Pol², Yanning Zhang^{1*}

¹Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China. ²Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA.

Figure S1. The optimized structures of (a)Li₁Bi₄Ge₃O₁₂, (b)Li₂Bi₄Ge₃O₁₂, (c)Li₃Bi₄Ge₃O₁₂, (d)Li₆Bi₄Ge₃O₁₂, (e)Li₁₀Bi₁₆Ge₃O₁₂, (f)Li₁₆Bi₄Ge₃O₁₂, (g)Li₂₈Bi₄Ge₃O₁₂, (h)Li₄₀Bi₄Ge₃O₁₂. The purple, green, red and black balls are for Bi, Ge, O and Li atoms, respectively.

Figure S2. The optimized $Li_nBi_4Ge_3O_{12}$ configurations with the coordinates of atoms (a) $Li_1Bi_4Ge_3O_{12}$, (b) $Li_2Bi_4Ge_3O_{12}$, (c) $Li_3Bi_4Ge_3O_{12}$, (d) $Li_6Bi_4Ge_3O_{12}$, (e) $Li_{10}Bi_{16}Ge_3O_{12}$, (f) $Li_{16}Bi_4Ge_3O_{12}$, (g) $Li_{28}Bi_4Ge_3O_{12}$, (h) $Li_{40}Bi_4Ge_3O_{12}$. The purple, green, red and black balls are for Bi, Ge, O and Li atoms, respectively.

Li _n Bi ₄ Ge ₃ O ₁₂	Lattice (Å)	Vol (Å ³)
bulk	10.68	1218.66
Li _{0.25}	10.76/10.72/10.72	1235.26
Li _{0.5}	10.79/10.79/10.74	1250.28
Li _{0.75}	10.83/10.83/10.72	1257.96
Li ₁	10.80/10.92/10.74	1267.57
Li ₂	11.02/11.02/10.78	1310.33
Li ₃	11.06/11.09/11.09	1360.29
Li ₆	12.44	1922.67
Li ₁₀	12.35	1882.29
Li ₁₆	12.62	2007.74
Li ₂₈	13.87	2668.94
Li ₄₀	14.73	3195.07

Table S1. The lattice parameters and volume of optimized Li_nBi₄Ge₃O₁₂.

Figure S3. The calculated g(r) curves of (a)GeO₂ and Bi₂O₃, (b)Li₂O, (c)LiBi and Li₃Bi (d)Li_{3.75}Ge and Li_{4.25}Ge. The zoom-in diagrams are the crystal structures of lithiation products adopted in MD simulations.

Compounds	Crystal	Formula	Energy (eV)
Li ₂ O	Fm-3m	Li ₂ O	-14.348
	Pnma	Li ₈ O ₄	-56.356
LiBi	P4/mmm	LiBi	-6.592
Li ₃ Bi	Fm-3m	Li ₃ Bi	-11.796
Li ₁₅ Ge ₄	I-43d	Li ₃₀ Ge ₈	-106.044
Li _{4.25} Ge	F-43M	Li ₈₅ Ge ₂₀	-285.060
Bi ₂ O ₃	P-3m1	Bi ₂ O ₃	-28.348
	Pn-3m	Bi ₄ O ₆	-53.754
Li	Im-3m	Li ₂	-3.815
	P4132	Li ₄	-6.546
Bi	Im-3m	Bi ₁	-3.768
	Pmma	Bi ₂	-8.031
Ge	Im-3m	Ge ₁	-4.177
GeO ₂	P3121	Ge ₃ O ₆	-57.724

Table S2. The detailed information of lithiation products.^{1, 2}

Figure S4. Cyclic voltammogram curve of the $Bi_4Ge_3O_{12}$ -base electrode with 1 M LiPF₆ in EC:DEC.

References

- M. de Jong, W. Chen, T. Angsten, A. Jain, R. Notestine, A. Gamst, M. Sluiter, C. Krishna Ande, S. van der Zwaag, J. J. Plata, C. Toher, S. Curtarolo, G. Ceder, K. A. Persson and M. Asta, *Scientific Data*, 2015, 2, 150009.
- 2. A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder and K. A. Persson, *APL Materials*, 2013, **1**, 011002.