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1 Details of the time-resolved circular dichroism signal calcula-
tion

We start with the minimal coupling Hamiltonian, retaining only the current density term:

Hint = −
∫

drj(r) · A(r, t) (1)

where j(r) is transition current density and A(r, t) is a vector potential of incoming pulse. The
heterodyne-detected signal is defined as the change of the number of photons in a given time,

S(Γ) =
∫

dt〈Ṅs〉 (2)

where, Γ indicates the set of parameters, i.e. incoming pulses central frequencies, durations, etc.

Ṅs =
i
h̄
[Hint, Ns] = −

i
h̄
[
∫

drj(r)A(r, t), a†
s as] (3)

The vector potential A(r, t) can be expressed as the following:

A(r, t) =

√
h̄

2ε0ωSΩ
(asεei(ks ·r−ωst) + a†

s ε∗e−i(ks ·r−ωst)) (4)

where ε is the electric field polarization vectors. Hence, it gives

Ṅs = −
i
h̄

∫
drj(r) · [A(r, t), a†

s as] = −
2
h̄

Im
∫

drj(r) · A∗(r, t) (5)

Therefore, the heterodyne-detected signal is

S(Γ) = −2
h̄

Im
∫

drdt〈j(r, t) · A∗(r, t)〉 (6)

The heterodyne-detected signal for Fig. S1 corresponds to

S(Γ) = −2
h̄

Im
∫

drdtdr3dt3dr2dt2dr1dt1(−
i
h̄
)3

〈jleft(r, t)j†
left(r3, t3)j†

right(r2, t2)jright(r1, t1)〉A∗s (r, t)As(r3, t3)Apu(r2, t2)A∗pu(r1, t1) (7)

The As and Apu is the vector potential of a probe and pump pulse respectively. The subscript
left and right indicates the Liouville space superoperators defined by Oleftρ = Oρ and Orightρ =
ρO. Upon expanding to first order in the probe and taking the difference between left and right
polarization of the probe, we get
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Figure. S 1: Possible pump-probe ladder diagrams. t1, t2, and t3 refer to the time interval between
interaction. Red and blue arrow indicates UV pump and X-ray probe interaction, respectively.

Sjj(Γ) = −
2
h̄

Im
∫

drdtdr1dt1(−
i
h̄
)

[
〈jleft(r, t)j†

left(r1, t− t1)〉A∗s (r, t)As(r1, t− t1)

− 〈jleft(r, t)j†
right(r1, t− t1)〉A∗s (r, t)As(r1, t− t1)

]

=
2
h̄2 Re

∫
drdtdr1dt1

[
〈〈j(r)|G(t1)j†

left(r1)|ρ(t− t1)〉〉A∗s (r, t)As(r1, t− t1)

− 〈〈j(r)|G(t1)j†
right(r1)|ρ(t− t1)〉〉A∗s (r, t)As(r1, t− t1)

]

=
2
h̄2 Re

∫
drdtdr1dt1

[
〈〈j(r)|G(t1)j†

left(r1)|ρ(t− t1)〉〉

− 〈〈j(r)|G(t1)j†
right(r1)|ρ(t− t1)〉〉

]
(ε∗LεL − ε∗RεR)A∗s (r, t)As(r1, t− t1)e−iksr+iksr1 eiωst1

(8)
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Using that εa∗
L εb

L − εa∗
R εb

R = (−i)εabz, where εabz is a Levi-Civita symbol and summing over elec-
tronic eigenstates, we get

SCD =
2
h̄2 Im

∫
drdtdr1dt1εabz[〈〈ja(r)|G(t1)j†b

left(r1)|ρ(t− t1)〉〉

− 〈〈ja(r)|G(t1)j†b
right(r1)|ρ(t− t1)〉〉]A∗s (r, t)As(r1, t− t1)e−iksr+iksr1 eiωst1

(9)

and

〈〈ab|jL − jR|cd〉〉 = jacδbd − jbdδac (10)

then,

SCD =
2
h̄2 Im

∫
drdtdr1dt1[〈〈j(r)×|G(t1)j†

−(r1)|ρ(t− t1)〉〉]A∗s (r, t)As(r1, t− t1)e−iksr+iksr1 eiωst1

=
2
h̄2 Im

∫
dtdt1[〈〈j(ks)× |G(t1)j†

−(−ks)|ρ(t− t1)〉〉]A∗s (t)As(t− t1)eiωst1

=
2
h̄2 Im ∑

abc

∫
dtdt1(jba(ks)×)e−iωabt1−Γabt1 [j†

ac(−ks)δbd− j†
bd(−ks)δac]ρcd(t− t1)A∗s (t)As(t− t1)eiωst1

(11)

where j− denotes the Liouville space current density superoperator defined by j−ρ = jρ− ρj.

SCD =
2
h̄2 Im ∑

abc

∫
dtdt1[jba(ks)× j†

ac(−ks)ei(ωs−ωab)t1−Γabt1 ρcb(t− t1)

− jba(ks)× j†
bc(−ks)ei(ωs−ωab)t1−Γabt1 ρac(t− t1)]A∗s (t)As(t− t1) (12)

Rearranging the sums to factorized out the density matrix after the pump, we get

SCD(ks, ωs) =
2
h̄2 Im ∑

abc

∫
dtdt1 A∗s (t)As(t− t1)ρcb(t− t1)

[jba(ks)× j†
ac(−ks)ei(ωs−ωab)t1−Γabt1 − jac(ks)× j†

ab(−ks)ei(ωs−ωca)t1−Γcat1 ] (13)

In the impulsive limit, As(t) = δ(t− T)As, As(t− t1) = δ(t− t1− T)As, where t −→ T, and t1 −→ 0.
We now express explicitly ρcb(T). At second order in the pump interaction (Fig S4), we have

ρcb(T) = 〈〈cb|ρ(T)〉〉

= −(−i
h̄
)2
∫

dr1dr2dt1dt2〈〈cb|j−(r2, t2)j−(r1, t1)|ρ(T− t1− t2)〉〉A∗pu(r2, T− t2)Apu(r1, T− t2− t1)

= −(−i
h̄
)2
∫

dr1dr2dt1dt2

(
〈〈cb|G(t2)jright(r2)G(t1)j†

left(r1)|ρ(t0)〉〉A∗pu(r2, T− t2)Apu(r1, T− t2− t1)

+ 〈〈cb|G(t2)j†
left(r2)G(t1)jright(r1)|ρ(t0)〉〉Apu(r2, T − t2)A∗pu(r1, T − t2 − t1)

)
(14)
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Figure. S 2: Ladder diagrams for pump interaction. t1 and t2, refer to the time interval between
two pump interactions.

Since, ρ(t0) = |gg〉〉

ρcb(T) = (
1
h̄
)2
∫

dr1dr2dt1dt2

(
Gcb,cb(t2)jbg(r2)Gcg,cg(t1)j†

cg(r1)A∗pu(r2, T− t2)Apu(r1, T− t2− t1)

+ Gcb,cb(t2)j†
cg(r2)Ggb,gb(t1)jbg(r1)Apu(r2, T − t2)A∗pu(r1, T − t2 − t1)

)

=
1
h̄2

∫
dt1dt2

(
e−iωcbt2−Γcbt2 e−iωcgt1−Γcgt1 jbg(kpu)j†

cg(−kpu)A∗pu(T − t2)Apu(T − t2 − t1)

+ e−iωcbt2−Γcbt2 e−iωgbt1−Γgbt1 j†
cg(−kpu)jbg(kpu)Apu(T − t2)A∗pu(T − t2 − t1)

)
(15)

In the impulsive limit, Apu(t) = δ(t)Apu, where t2 −→ T, and t1 −→ 0. The Fourier transform of
pump pulse in time-domain to frequency domain gives,

Apu(T − t1) =
∫ dω1

2π
Apu(ω1)e−iω(T−t1) (16)

and ∫ ∞

0
dt2ei(ω1−ω2−ωcbt2−Γcbt2 =

i
ω1 −ω2 −ωcb + iΓcb

(17)
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Hence, the density matrix at waiting time T becomes,

ρcb(T) = −
1
h̄2

∫ dω1

2π

dω2

2π
Apu(ω1)Apu(ω2)[

jbg(kpu) · ε∗pu · j†
cg(−kpu) · εpuei(ω2−ω1)T

(ω1 −ω2 −ωcb + iΓcb)(ω1 −ωcg + iΓcg)
+

j†
cg(−kpu) · εpu · jbg(kpu) · ε∗pue−i(ω2−ω1)T

(−ω1 + ω2 −ωcb + iΓcb)(−ω1 −ωgb + iΓgb)

]
(18)

Likewise, the final TRCD signal becomes,

SCD(ωs, T) =
2
h̄2

1
(2π)2 NRe ∑

abc
A∗s (ωs)As(ωs)ρcb(T)[

jba(ks)× j†
ac(−ks)

ωs −ωab + iΓab
−

jac(ks)× j†
ab(−ks)

−ωs −ωca + iΓca

]
(19)

Finally, substituting a, b, and c into c, e′, and e, respectively, gives the final expression in the
manuscript.
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2 Quantum simulation results

We compared our quantum calculations with previous work of Rubio [1] which performed CASSCF
calculations within the same active space (13o/18e) for the electronic structure calculation of the
Mg-porphyrin. To that end, we computed transition energies (Table S1 and S2) and transition
dipole moment (Fig. S3) of the Mg-porphyrin calculated at the CASSCF (13o/18e) level with C1
and D2h symmetry option (note that the highest symmetry option in MOLPRO is D2h). By compar-
ing the orbital configuration of each excited state of the active orbitals, we assigned our e1, e3, e5,
and e7 states to e1 to e4 states (Q band to N band) of Rubio’s work and those of D2h symmetry.
The e1, e3, e5, and e7 states are originally doubly degenerate, however, they might split into several
non-degenerate states due to the loss of symmetry [1, 2]: for example, the Q bands split into e1
and e2 states. Discrepancies of the computed transition energies compared to experimental data
are due to the lack of dynamics correlation in CASSCF. However, our computation matches the
results of the CASSCF calculation of Rubio [1] in terms of transition energies and orbital config-
urations. Moreover, the square of transition dipole moment with D2h symmetry shows the same
trend (e1 < e3, e3 > e5, and e5 < e7). The small deviation from Rubio’s work mainly originates
from the different basis set and since the oscillator strength was calculated with CASPT2 in that
study. It is also consistent with experiment that the absorption of e1 is very weak and e3 shows the
most intense absorption [3].

Table S 1: Comparison of transition energies (eV), transition dipole moment (a.u.), main orbital
configuration of Mg-porphyrin between this study (with C1 symmetry), Rubio’s work [1] and
experimental results [3]. The main orbital configuration of C1 symmetry was converted to the
orbital notations of D2h symmetry for convenience.
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Table S 2: Comparison of transition energies (eV), transition dipole moment (a.u.), main orbital
configuration of Mg-porphyrin between this study (with D2h symmetry), Rubio’s work [1] and
experimental results [3].

Figure. S 3: Stick spectra of the oscillator strength for the valence excitations from the ground
state. Blue: CASSCF calculation with D2h symmetry, Red: CASSCF calculation with C1 symmetry,
Yellow: CASSCF result [1].

3 Time-dependent density matrix elements and Average transi-
tion current density
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Figure. S 4: The time-dependent density matrix for various coherences of valence excited states.
The density matrix originating only from e1, e2, e3, e5, and e7 are shown.

jab c1 c2
x y x y

e3 -7.137 2.086 -7.137 2.087
e5 -0.300 -4.448 -0.300 -4.448
e7 0.245 -5.231 0.245 -5.231

Table S 3: The average transition current density value for the transition from e3, e5, and e7 valence
state to c1 and c2 core states in the real space (x and y component are separately shown, Unit: 10−7

e/bohr3), where e is the electron charge.
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