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ForceBalance optimisation procedure. A trust region method approach has been used in the 

ForceBalance optimisations in this work. In trust region methods, there is a region of search space 

in which it is assumed the local derivative information is a good approximation of the objective 

function being minimised. After each optimisation step, the trust radius may be increased or 

decreased based on the quality Q of the steps taken, i.e. the ratio of the objective function change 

between steps i and i+1 and the expected change from the local derivative information at step i. 

The following formula is used to adjust the adaptive trust radius after the step is taken:

𝑅𝑖 + 1 = max (𝑅min, 
𝑅𝑖

1 + 𝑎)       Q < 0.25#(1)

𝑅𝑖 + 1 = 𝑅𝑖[1 + 𝑎exp [ ‒ 𝑏(𝑅𝑖

𝑅0
‒ 1)]]       𝑄 > 0.75#(2)

Here  is the current trust radius;  the trust radius at the next iteration; the default trust 𝑅𝑖 𝑅𝑖 + 1 𝑅0 

radius, was set to 0.1; and  the minimum trust radius, was set to 0.05. The parameter , called 𝑅min 𝑎

“adapt_fac” in ForceBalance, which is related to how much the step size is increased, was set to 

1.0; , called “adapt_damp”, that ties down the trust radius, was set to 0.2. The exponential term 𝑏

biases the current trust radius toward the default value, i.e. the trust radius increases by larger 

factors if the current value is smaller than the default, and vice versa if larger.

ForceBalance optimisation based on hydration free energy gradients. The optimisation of 

side-chain analogues and the protein backbone has been made based on atomistic hydration free 

energies, following 4 stages.
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Stage A: Hydration free energy calculations on AT side-chain analogues, CG side-chains and 

backbone beads. The interaction energy terms between the solute and solvent are linearly related 

to the coupling parameter α. With this, the solvation free energies for the side-chain analogues, for 

the atomistic and coarse-grained systems, were calculated based on a decoupling approximation. 

That is, interactions between the solute and the solvent were gradually turned off. Our reference 

state will be our system in solution, and the final state will be the solute in vacuum. The OPLS-

AA1 and the AMBER-14SB2 force fields were used for the atomistic side-chain analogues and the 

backbone, respectively. In all cases, systems were solvated in a TIP3P3 water box. Since we are 

comparing our calculations with previous studies, especially the ones that give closer results to 

experiment, we have tried to be consistent with those, hence the choice of different force fields in 

the optimisation process. The SIRAH protein force field4 was used for the CG side-chains and 

backbone beads, solvated in a WT45 water box. Electrostatic and van der Waals interactions were 

turned off together. Eleven discrete values of the coupling parameter α were used for the scaling 

of both CG and AT side-chain analogues potentials (see figure 2 and table S1 for details on the 

analogues used): 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0, where 0.0 and 1.0 represent 

the fully on and fully off systems. In the case of N-methylacetamide (NMA), which was used as a 

representation of the backbone beads, twenty-five values were used: 0.0, 0.5, 0.1, 0.15, 0.2, 0.25, 

0.3, 0.35 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.87, 0.89, 0.91, 0.93, 0.95, 0.97 and 

1.0. The soft-core scaling methods for Lennard-Jones (with αLJ = 0.5) and Coulombic interactions 

were used to smoothly vary the potentials6,7. Simulations were run for 5 ns per window, with a 

previous equilibration of 1 ns and 5000 iterations of the steepest descent algorithm. All the 

simulations were run using the NPT ensemble. The Multistate Bennett Acceptance Ratio (MBAR)8 

was used to compute the free energy difference, which combines data from multiple states. This 
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method is an extension of the well-known Bennett Acceptance Ratio (BAR)9, which needs 

information from two states (in contrast to FEP10 or TI11, which need information from only one 

state) in order to compute the free energy difference. 

For the AT simulations, a leap-frog stochastic dynamics integrator was used for integration of 

Newton’s equations of motion with a time-step of 2 fs.  Electrostatics interactions were calculated 

using the PME procedure12 with a real-space cut-off of 1.2 nm and a Fourier grid spacing of 0.12 

nm. Van der Waals interactions were modelled using the classical Lennard-Jones potential with a 

cut-off of 1.2 nm. The LINCS algorithm13 was applied to constrain all H-bond lengths. AT 

simulations were run at 1 atm with the Parrinello-Rahman barostat14 and at 298.15 K with the 

Berendsen thermostat15. 

For the CG simulations, a leap-frog stochastic dynamics integrator was used for integration of 

Newton’s equations of motion with a time-step of 20 fs.  Electrostatic interactions were calculated 

using the PME procedure with a grid spacing of 0.2 nm. Non-bonded interactions were modelled 

using the classical Lennard-Jones potential and a Coulombic energy function, with a cut-off of 1.2 

nm each. All simulations were run at 1 atm with the Parrinello-Rahman barostat and at 298.15 K 

with the v-rescale thermostat16. All simulations were run with GROMACS v. 2018.217.

Stage B: Collection of AT <U> values. <U> were collected from the AT simulations in 

stage A, at different  values. For most of the side-chains,  simulations at 0.0 were not used due 

to the large magnitudes of <U> values and differences between AA and CG that could not be 

closely fitted. Val, Cys and Trp were the only exceptions for this case. <U> values were 

collected with an in-house Python code created for this purpose, averaging U values for each 
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frame in the trajectories. Table S1 summarise the  values used for each of the simulated side-

chains in the ForceBalance optimisation. 

Stage C: Optimisation of SIRAH CG side-chains and backbone. Derivatives of the free energy 

gradients with respect to the parameters are calculated. These are used to build an objective 

function, which is a squared sum of the differences between the AA and CG <U> values. The 

optimisation was carried out using ForceBalance using the same settings described in the WT4 

model development, except for the adapt_fac and adapt_damp parameters, that were set to 0.2 and 

0.5 respectively. Only 10 sets of parameters were optimised, 9 of them corresponding to 13 un-

charged amino acid side-chains, as some of the side-chains are described by identical parameters, 

and 1 set corresponding to the backbone beads. In this case, the targets were atomistic free energy 

gradients at 2 or 3 different  simulation values (table S1). Proline is the only side-chain that has 

not been optimised given the lack of side-chain analogues, keeping its original parameter values. 

Only non-bonded parameters were optimised, including van der Waals epsilon () values, and 

charges, mainly given the parameter sensitivity observed (see below for a discussion on parameter 

dependence and figure S1). All new optimised parameters are shown in table S2. All the 

optimisation simulations for the SIRAH beads were run with the optimised WT4-FB model (this 

work). 100 optimisation cycles were carried out, and the optimal parameters were taken from the 

lowest value of the objective function. Systems were minimised for 5000 steps using a steepest 

descent algorithm followed by an NPT equilibration time of 5 ns. Production runs were performed 

for 10 ns. A leap-frog algorithm was used for integration of Newton’s equations of motion with a 

time-step of 20 fs. Electrostatic interactions are calculated using the Particle Mesh Ewald method12 

with a direct cut-off of 1.2 nm and a grid spacing of 0.2 nm. A 1.2 nm cut-off was used for van der 
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Waals interactions. The v-rescale thermostat16 and the Parrinello-Rahman barostat14 were used to 

maintain the temperature at 298.15 K and the pressure at 1 atm, respectively. The simulation 

conditions were consistent with the original SIRAH publication4. All simulations were run with 

GROMACS v. 2018.217. All specific non-bonded pairs, previously set to the original SIRAH force 

field, between the backbone beads (GC, GN and GO) and water beads (WT) have been removed, 

and we have set those interactions using Lorentz-Berthelot combining rules.

Stage D: Re-calculation of CG hydration free energies. The optimised SIRAH-OBAFE force 

field was used for the re-calculation of the coarse-grained hydration free energies. The same 

protocol in stage A was used, with some minor differences based on the original publication of the 

SIRAH protein force field4. For all simulation, a leap-frog stochastic dynamics integrator was used 

for integration of Newton’s equations of motion with a time-step of 20 fs.  Electrostatic interactions 

were calculated using the PME procedure with a grid spacing of 0.2 nm. Non-bonded interactions 

were modelled using the classical Lennard-Jones potential and a Coulombic energy function, with 

a cut-off of 1.2 nm each. All simulations were run at 1 atm with the Parrinello-Rahman barostat14 

and at 298.15 K with the v-rescale thermostat16. All simulations were run with GROMACS v. 

2018.217. The new hydration free energies are shown in figure 2 and table S3, and they are 

compared with hydration free energies calculated from atomistic systems, with the SIRAH 1.0 and 

the updated SIRAH 2.0 protein force fields.

Hydration free energies of charged side-chains. Raw hydration free energies (equation 5) have 

been calculated using a lattice-summation scheme (PME) by decoupling the interactions, 

electrostatic and van der Waals together, of the ion (side-chain) with the solvent (excluding 

intramolecular interactions). Eleven lambda values have been used (0.0, 0.1, …, 0.9, 1.0) for all 
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the charged side-chains, using the GROMOS 54A818,19 for atomistic systems, the original SIRAH 

1.0, the updated SIRAH 2.0, and SIRAH-OBAFE force fields in GROMACS v.2018.2. The 

simulation conditions and soft-core potential settings were similar to the ones used in the 

calculation of hydration free energies for uncharged side-chains (Stage A from the workflow in 

figure 1). A standard state correction was used with a value equal to 1.9 kcal•mol-1 for water, using 

a density value of 997 kg•m-3 (see refs 18, 20, 21). All the reported raw free energies exclude the 

self-interaction energy. 

The corrections for the calculation of hydration free energies for charged are summarised below 

(see refs 18, 20, 21 for more details): 

(A)Approximate representation of the electrostatic interactions (non-Coulombic) which 

lead to a deviation of the solvent polarization around the ion relative to an idealised 

Coulombic system, with also incomplete interactions of the ion with the solvent beyond 

the cut-off. This type A correction is specific for the electrostatic scheme used; it does 

not apply for lattice-summation schemes (PME), which are Coulombic in the limit of 

infinite system sizes, but it does apply for cut-off truncation (CT) or reaction field 

schemes (BM). The type A correction is specific for the electrostatic potential used, and 

is evaluated using the same potential, but in the idealized context of a macroscopic and 

non-periodic system. Moreover, it can be sub-divided into corrections A1 and A2 for CT 

schemes, which apply beyond the cut-off sphere of the ion and within it, respectively.

(B) Approximation of the size of the systems (finite), which do not follow a macroscopic 

regime. This leads to deviations on the solvent polarization, relative to the polarisation 
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of an ideal system (macroscopic). A clear example is the use of a computational box 

simulated under periodic boundary conditions. This type B correction is applied for the 

specific electrostatic scheme in the simulation (e.g., LS, CT or BM scheme). 

(C) Deviation of the solvent generated electric potential at the atomic site of the ion relative 

to a “correct” electrostatic potential, which is a consequence of the use of an 

inappropriate summation scheme for the calculation of electrostatic interactions (i.e. P 

scheme, which stands for summing over individual charges, and a M scheme, which 

stands for summing over whole solvent molecules), as well as the presence of a constant 

potential offset. This type C correction is applied for a specific electrostatic scheme and 

choice of boundary conditions, and can be subdivided in type C1 and C2 corrections, for 

improper potential summation and for the potential offset, respectively.

(D)Approximate force-field representations, especially related to the wrong dielectric 

constant for the solvent model used.

Numerical solutions of the Poisson equation are needed to obtain an estimation of the charging 

free energy in an idealised system that obeys a macroscopic regime (non-periodic with Coulombic 

electrostatic interactions) and based on the experimental solvent permittivity ( ). Simulations ∆GNPBC
chg

of a periodic systems with a specific electrostatic scheme and based on the model solvent 

permittivity are also needed (  for a periodic boundary condition system using a LS ∆GPBC,LS
chg

scheme). The sum of corrections A, B and D can be obtained based on these two continuum-

electrostatic simulations, as

∆G LS
A + B + D =  ∆GNPBC

chg  -  ∆GPBC,LS
chg  #(𝑆1)
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for a LS scheme. The two terms on the right side of equation S1 are charging free energies obtained 

with the Poisson equation solver from references22-24, for non-periodic and periodic systems with 

Coulombic electrostatic interactions, respectively.

In this work, a relative permittivity of 78.4 for water has been used in the calculation of  ∆GNPBC
chg

A relative permittivity of 63.84 for the optimised WT4 water model was used, as calculated based 

in reference 26, in the calculations of . Continuum-electrostatic calculation were done with ∆GPBC,LS
chg

the GROMOS++ pre-MD and analysis software v.1.4.125 and were based on single structure taken 

from as the final configuration of the hydration free energy simulations of the charged side-chains. 

The appropriate boundary conditions and electrostatic scheme were used for each case, with a grid 

spacing of 0.02 nm and a threshold of 10-6 kJ•mol-1 for the convergence of the electrostatic free 

energy. 

Type C1 correction is required for LS and BM (reaction field) schemes, and corrects the P-

summation (atom-based cut-off) implied by these schemes to a proper M-summation (molecule-

based cut-off). For a LS scheme, this is given by:

∆GLS
C1 =   - NAqi(1 -

Vi

〈L〉3)ξ'S#(𝑆2)

where NA is the Avogadro’s constant, Vi is the ionic volume (assumed constant and defined as the 

change in the volume of the computational box upon insertion of the neutral ion-sized cavity)18, L 

is the length of the edge of the box, qi is the total ionic charge, and ξ’S corresponds to the exclusion 
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potential of the solvent model. For fully rigid models with a single van der Waals interaction site, 

this last term has been usually calculated based on the quadrupole moment trace of the solvent 

model. For more complex solvent models, different methods have been derived for the calculations 

of their exclusion potentials26. In this work, we have employed method IV from reference 26, 

which relies on the comparison of the raw potentials within a cavity using two different 

electrostatic schemes, assuming that the corrected potentials are equal. For this, we have used a 

cut-off truncation (CM) and reaction field schemes (BM). The difference in the raw potentials are 

related to ξ’S as:

ξ'S =  -  [2(ϵ'
S - 1)

2ϵ'
S + 1

 (1 -
R3

I

R3
C

)] - 1(ϕ * ,raw,CM -  ϕ * ,raw,BM)##(S3)

where RI is the effective ionic radius, RC is the cut-off, *,raw,CM and *,raw,BM are the raw 

electrostatic potentials within an uncharged cavity of the size of a CG sodium ion, and ϵ’S 

corresponds to the dielectric permittivity of the solvent model, which has been calculated based 

on the methodology used in reference 26. Simulations of an un-charged sodium ion solvated in the 

optimised WT4-FB model were run for 1 ns using a BM scheme, with a reaction field permittivity 

ϵRF equal to 80. Electrostatic potentials at the cavity were obtained for both CM and BM schemes 

based on the electrostatic interaction of the cavity with the solvent within the cut-off RC, using an 

in-house Python script created for this purpose. Simulation settings were similar to the previous 

one used in this work. The dielectric permittivity calculated here differs with the value previously 

reported in table 1, but is within the error. Moreover, it has been reported that dielectric 

permittivities calculated using a reaction-field scheme are more sensitive to the choice of 

simulation parameters such as the non-bonded cut-off. Given this, the lack of agreement is not 
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unexpected, but as a matter of consistency with previous studies26, we decided to use the dielectric 

permittivity calculated in this section for the evaluation of the exclusion potential. Moreover, the 

dielectric permittivity for the WT4 water model calculated in this section is similar to the one 

calculated by Reif et al. 26 with a reported value of 66.7 using the SPC model.

Type C2 corrections correct for the presence of an interfacial potential at the ion surface. This 

term is proportional to the ratio of the ionic volume to the box volume. With this, its magnitude is 

very small for the systems used in this work, and has been neglected in the calculation of the 

corrected hydration free energies. 

Optimisation of charged side-chains.  All the optimisation simulations for the SIRAH beads 

were run with the optimised WT4-FB model (this work). 100 optimisation cycles were run. 

Systems were minimised for 5000 steps using a steepest descent algorithm followed by an NPT 

equilibration time of 5 ns. Production runs were performed for 10 ns. A leap-frog algorithm was 

used for integration of Newton’s equations of motion with a time-step of 20 fs. Electrostatic 

interactions are calculated using the Particle Mesh Ewald method12 with a direct cut-off of 1.2 nm 

and a grid spacing of 0.2 nm. A 1.2 nm cutoff was used for van der Waals interactions. The v-

rescale thermostat16 and the Parrinello-Rahman barostat14 were used to maintain the temperature 

at 298.15 K and the pressure at 1 atm, respectively. The simulation conditions were consistent with 

the original SIRAH publication4. All simulations were run with GROMACS v. 2018.217. 

11



Table S1.  simulation values used for the collection of <U> values, that correspond to the 

targets in the optimisation of the CG beads in ForceBalance. Atomistic analogues used are shown 

in parenthesis.

Side-chain  values

Asn (acetamide) 0.1, 0.2, 0.5

Cys (methanethiol) 0.0, 0.2, 0.4

His (methylimidazole) 0.1, 0.2, 0.4

Met (methyl-ethylsulfide) 0.1, 0.2, 0.4

Phe (toluene) 0.5, 0.6

Ser (methanol) 0.1, 0.2, 0.5

Trp (methylindole) 0.0, 0.4, 0.5

Tyr (p-cresol) 0.1, 0.4, 0.5

Val (propane) 0.0, 0.5

Backbone (N-methylacetamide) 0.1, 0.3

Parameter dependence. Initially, a screening test was performed to evaluate the parameter 

dependence of <U> with respect to the force field parameters, i.e. to evaluate the changes in 

<U> based on changes in the force field parameters. For some of the cases (Ser, Asn and Val), 

both van der Waals sigma () and epsilon () values were optimised in a first attempt. Based on 

the parameter dependence observed in figure S2 for the case of Val, the <U> values do not 

significantly change within a sensible range of van der Waals  values. On the contrary, an 

important parameter dependence is shown with respect to the van der Waals  values (i.e. big 

changes in <U> are observed when changes in the parameters are performed). In figure S2, the 

van der Waals parameters are plotted in the form of internal optimisation variables in ForceBalance 
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(“mathematical parameters”), which are related to the physical parameters (i.e. the parameters that 

are actually printed in the force field file) as a shifted displacement form the original value:

𝐾𝑝ℎ𝑦𝑠 = 𝐾𝑝ℎ𝑦𝑠0 + 𝑆𝐹 ∗ 𝐾𝑚𝑎𝑡ℎ#(𝑆4)

where Kphys corresponds to the parameter that is used in the simulation after the optimisation 

process, Kphys0 is the initial parameter before the optimisation, SF is the scaling factor and Kmath 

the mathematical value used in the optimisation process. Finally, only van der Waals  values and 

charges were optimised given the parameter sensitivity that exists (see table S2 and figure S2).

Figure S1. Parameter dependence for Val. Changes of <U>0 (in units of kcal·mol-1) with respect 

to the van der Waals (vdW)  and  values are shown (left and right panel, respectively). 

Simulations were run at  = 0.0 (fully on solute) for 25 ns. The simulation conditions were the 

same as the ones used for the side-chain optimisations (see stage A). Van der Waals values are 

plotted as mathematical values (mvals).
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Atomistic gradient choice. It is important to note that for most cases, AT gradients at =0 were 

too high to be fitted by ForceBalance due to the large magnitude of the gradient and the large 

difference between AT and CG. Inclusion of the =0.0 point would have introduced a very large 

contribution to the objective function and worsened the quality of fit of all the other  points. We 

are assuming that the gradients should behave in a similar manner between the all-atom and coarse-

grained systems, but this might not be the case. Using the free energy gradients as a proxy for the 

free energies, instead of the free energy itself, relies on the assumption that 1) if one of the free 

energy gradients is correct, we expect a better performance across the whole range of  values, 

and 2) coarse-grained and atomistic systems should have similar free energy gradients. Neither of 

these is necessarily true. 

Special cases. The optimisation of methionine is an example where our method has worked (Fig. 

S2), finding a minimum, i.e. the optimal set of parameters to minimise the objective function. A 

manual search of 441 parameter combinations shown in figure S2 led us to similar results to those 

obtained for the full optimisation of methionine, with values of vdW = 0.49 nm, vdW = 4.56 

kJ·mol-1, and vdW = 0.48 nm and vdW = 4.22 kJ·mol-1, respectively. Figure S3 shows the free 

energy gradients for the atomistic and coarse-grained methionine side-chain. The overall shape of 

the profile is maintained, but differences exists in the magnitude of the gradients. This may account 

for the differences observed for the calculated HFEs. Fortuitously, the optimised parameters led to 

better agreement with experimental hydration free energies. 

In the case of phenylalanine, the optimised SIRAF-OBAFE parameters performed worse 

compared to the original SIRAH force fields, with values of 0.50  0.05 kcal·mol-1 for the SIRAH 

1.0 force field, 0.57  0.05 kcal·mol-1 for the SIRAH 2.0 force field, vs. 1.12  0.06 kcal·mol-1 for 
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the optimised SIRAH-OBAFE. We believe this is mainly due the complexity on the free energy 

gradient profile for this residue. Moreover, later optimisation runs of side-chains that share the 

A2C bead-types with phenylalanine (such as His, Tyr, and Trp) were performed using this 

parameter fixed to its original value.

Figure S2. Methionine objective function surface. 441 combinations (21 x 21) of vdW and vdW 

simulations were performed, and single calculations of the objective function were extracted and 

plotted. The maximum and minimum values for the objective function are shown as blue and 

orange dots, respectively, and for each of these the parameter combination is shown.
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Figure S3. Free energy gradients for methionine. (A) atomistic free energy gradients and (B) 

coarse-grained free energy gradients. The results represent 11  simulations with average <U> 

values for each of those simulations shown. 

Figure S4. HFE-fitted charge values for the optimised charged side-chain. Schematic 

representation of the three optimised charged side-chains (Lys, Arg and Glu/Asp), for the original 

SIRAH 1.0 and the HFE-fitted parameter set (after the initial optimisation).
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Figure S5. HFE-fitted VDWε values for the optimised charged side-chain. Schematic 

representation of the three optimised charged side-chains (Lys, Arg and Glu/Asp), for the original 

SIRAH 1.0 and the HFE- fitted parameter set (after the initial optimisation). All values are in units 

of kJ·mol-1.
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Figure S6. RMSD times series against the last frame. RMSD trajectory analysis is shown as a time 

series comparison with respect to the Cα carbons of the CG representation to the last frame of the 

trajectory for (A) Serum albumin, (B) GFP protein, (C) Gamma-adaptin domain, (D) L7Ae 

Archeal ribosomal protein, (E) CRO repressor and (F) the N-terminal domain of phage 434 

repressor. PDB codes are shown in the figure titles. Simulations were run using the SIRAH 2.0 

(black) and SIRAH-OBAFE (green) force fields.
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Table S2. Optimised parameters for the SIRAH-OBAFE and WT4-FB force fields

Bead typea VDW (nm) VDW (kJ·mol-1) Charge (e)

Side-chain beads (SIRAH-OBAFE)

Asn/Gln P3Cn/q SaOb 3.5217E-01 0.00

P5N SaO 5.5453E-01 5.9527E-01

P4O SaO 5.547E-01 -5.9527E-01

Cys P1S SaO 1.0547E+00 -6.0817E-01

P2P SaO 2.2622E-01 6.0817E-01

His (epsilon 
protonated)

A2C SaO SaO 0.00

A5E SaO 1.7084E+00 5.0449E-01

A5D SaO 1.7023E+00 -5.0449E-01

Met Y3Sm SaO 4.7181E+00 0.00

Phe A2C SaO SaO 0.00

A1C SaO SaO 0.00

Ser/Thr P1O SaO 4.4658E-01 -9.1874E-01

P2P SaO 2.2622E-01 9.1874E-01

Trp A2C SaO SaO 0.00

A7N SaO 6.9916E-01 -3.5323E-01

A8P SaO 1.5469E+00 3.5323E-01

A1Cw SaO 3.1449E+00 0.00

Tyr A2C SaO SaO 0.00

A4O SaO 2.0418E+00 -3.5107E-01

A3P SaO 2.0491E+00 3.5107E-01

Val/Leu/Ile Y4Cv/Y1C SaO 5.0887E-01 0.00

Backbone GC SaO 5.5058E-01 4.2176E-01

GO SaO 5.2511E-01 -6.7336E-01

GN SaO 5.5058E-01 2.5161E-01 
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Arg C2Cr SaO SaO SaO

C3Cr SaO SaO SaO

C5N SaO SaO SaO

Lys C1Ck SaO SaO SaO

C7Nk SaO SaO SaO

Asp/Glu C4Ce/d SaO SaO SaO

C6O SaO SaO SaO

WT4-FB

WN1 4.2474E-01 7.6717E-01 -2.6730E-01

WN2 4.2474E-01 7.6717E-01 -5.6223E-01

WP1 4.2474E-01 7.6717E-01 2.6730E-01

WP2 4.2474E-01 7.6717E-01 5.6223E-01
a Bead types taken from the original SIRAH publication4. 

b SaO, same as original, taken from the SIRAH protein force field publication4.

Table S3 Hydration free energies of neutral side-chains and backbone using the OPLS-AA, 

AMBER-14SB, SIRAH 1.0, SIRAH 2.0 and SIRAH-OBAFE force fieldsa,b

Expt. OPLS-AAc SIRAH 1.0c SIRAH 2.0 c SIRAH-OBAFEc 

Backbone (NMA) 10.1
7.40  0.04 

(AMBER-14SB) -1.73  0.07 -0.16  0.05 10.91  0.05

Val (propane) -1.99 -2.45  0.06 -0.02  0.01 -0.18  0.01 -2.26  0.03

Leu (isobutane) -2.28 -2.69  0.10 -0.02  0.01 -0.18  0.01 -2.26  0.03

Ile (butane) -2.15 -2.59  0.08 -0.02  0.01 -0.18  0.01 -2.26  0.03

Ser (methanol) 5.06 4.44  0.01 -1.87  0.04 0.10  0.09 5.26  0.10

Thr (ethanol) 4.88 4.12  0.11 -1.87  0.04 -0.40  0.01 5.26  0.10

Cys (methanethiol) 1.24 0.39  0.02 -1.78  0.03 -0.71  0.01 0.92  0.07

Met (methyl-
1.48 0.06  0.01 -0.03  0.02 -0.01  0.03 1.36  0.02
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ethylsulfide)

Asn (acetamide) 9.68 8.46  0.02 2.87  0.07 2.85  0.04 8.12  0.05

Gln (propionamide) 9.38 8.36  0.04 2.87  0.07 2.86  0.04 8.12  0.05

Phe (toluene) 0.76 0.40  0.04 0.50  0.05 0.57  0.05 1.12  0.06

Tyr (p-cresol) 6.11 4.61  0.13 0.70  0.06 0.67  0.02 5.10  0.04

His (methyimidazole) 10.27 7.70  0.06 1.47  0.04 1.24  0.02 8.46  0.08

Trp (methylindole) 5.88 5.55  0.22 -0.47  0.09 1.52  0.02 4.51  0.04

MUEb 1.04 5.03 4.45 0.68

MSEb -1.04 -4.13 -3.61 -0.43

R2 0.98 0.10 0.40 0.97

a Values are in the units of kcal·mol-1. Experimental values were obtained from reference 27. 
OPLS-AA and AMBER-14SB values were re-calculated using the corresponding side-chain 
analogues listed in parenthesis, based on reference 26.

b Mean signed error (MSE), mean unsigned error (MUE) and determination coefficient (R2).

c Error bars modelled as standard errors across three repeat simulations.
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