Atomistic Origins of Charge Traps in CdSe nanoclusters

V. S. Baturin^{1,2 (a)}, S. V. Lepeshkin^{1,2}, N. A. Bushlanova², and Yu. A. Uspenskii²

SUPPORTING INFORMATION

¹Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russian Federation

²Lebedev Physical Institute, Russian Academy of Sciences, Leninskii prosp. 53, Moscow, 119991, Russian Federation

^(a) correspondence to v.baturin@skoltech.ru

Contents

Table S1 Globally optimized structures of Cd_nSe_m structures $(1 \le n, m \le 15)$	2
Figure S1 Relative stability of Cd _n Se _m clusters	. 17
Figure S2 The structure, DOS and IPR = $1/N_{loc}(i)$ of the Cd ₁₀ Se ₁₅ (a) and Cd ₁₁ Se ₁₂ (b) clusters	3, 10
corresponding to three stabilization stages	. 18
Table S2 Wavefunction, type and localization of strong and medium near-gap traps	. 19

Table S1 Globally optimized structures of Cd_nSe_m structures ($1 \le n, m \le 15$).

Figure S1 Relative stability of Cd_nSe_m clusters expressed via lesser of two second-order differences: E(n, m + 1) + E(n, m - 1) - 2E(n, m) and E(n + 1, m) + E(n - 1, m) - 2E(n, m), where E(n, m) is a total energy of Cd_nSe_m cluster. As any cluster is globally unstable towards coalescence into the bulk, such a relative stability criteria are used

Figure S2 The structure, DOS and IPR = $1/N_{loc}(i)$ of the Cd₁₀Se₁₅ (a) and Cd₁₁Se₁₂ (b) clusters, corresponding to three stabilization stages

Table S2. Wavefunction, type and localization of strong and medium near-gap traps

