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Abstract
This supplemental material contains the equation
of motion derived from Lagrangian dynamics that
conserves the SDAC Hamiltonian, implementation
details of the EPS time-integration algorithm, and
the comparison between the SDAC QM/MM cal-
culation and the pure QM calculation.

1 EOM derived from La-
grangian dynamics

The Lagrangian EOM that conserves the Hamilto-
nian [Eq. (8) of main text] is

mα~aα =−∇~rα
V +∑

β

(
∇~rβ
·∇~vα

V
)
~vβ

+∑
β

(
∇~vβ
·∇~vα

)
~aβ . (1)

The speed-dependence of Eq. (1) is more compli-
cated than that of Eq. (9) of main text. Since all
atoms are coupled together in Eq. (1), it is diffi-
cult to estimate the deviation of the dynamics de-
scribed by Eq. (1) from that of the ‘real system’.
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2 Details of the EPS algorithm
The original phase space at the initial time is(
{~r(0)α },{~v

(0)
α }

)
, in which I use velocities in-

stead of momenta for simpler notation. In
the EPS algorithm, the original phase space
is duplicated to form an extended phase space
({~rα},{~vα},{~rα

′},{~vα
′}). The time integration

is performed in the extended phase space, and
the original phase space of a certain time step is
obtained from the extended phase space by pro-
jection. One can choose to carry out the time
integration entirely in the extended phase space,
or project back to the original phase space and
form the extended phase space with the projected
values after a few steps. The EPS time propaga-
tion operator that run in the extended phase space
for k time steps can be written as:1

Ψ
(k) = P̂◦

[
M̂2R̂V̂ ′R̂′V̂ M̂1V̂ R̂′V̂ ′R̂

]k ◦Ĉ, (2)

so that

Ψ
(k)

(
{~r(i)α },{~v

(i)
α }

)
=
(
{~r(i+k)

α },{~v(i+k)
α }

)
. (3)

The propagators R̂, V̂ , R̂′, and V̂ ′ of Eq. (2) per-
form update to {~rα}, {~rα

′}, {~vα}, and {~vα
′} re-
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spectively:

R̂ : ~rα ←~rα +(∆t/2)~vα , (4)

V̂ : ~vα ←~vα +(∆t/2)~aα(~rα ,~vα
′), (5)

R̂′ : ~rα
′←~rα

′+(∆t/2)~vα
′, (6)

V̂ ′ : ~vα
′←~vα

′+(∆t/2)~aα(~rα
′,~vα), (7)

where ∆t is the size of the time step.
Ĉ of Eq. (2) is the operator that extend the orig-

inal phase space into the extended phase space:

Ĉ
(
{~r(i)α },{~v

(i)
α }

)
=
(
{~r(i)α },{~v

(i)
α },{~r

(i)
α },{~v

(i)
α }

)
(8)

The mixing operators M̂n (n = 1,2) of Eq. (2)
mixes the two parts of the extended phase space to
improve the stability of the algorithm:

M̂n
(
{~rα},{~vα},{~rα

′},{~vα
′}
)
=(

{an~rα +(1−an)~rα
′},{bn~vα +(1−bn)~vα

′},
{(1−an)~rα +an~rα

′)},{(1−bn)~vα +bn~vα
′}
)
.
(9)

The projection operator P̂ of Eq. (2) projects the
extended phase space to the original phase space:

P̂
(
{~rα},{~vα},{~rα

′},{~vα
′}
)
=(

{a~rα +(1−a)~rα
′},{b~vα +(1−b)~vα

′}
)
. (10)

Different choices of the mixing and projection
parameters of the EPS algorithm are available in
the literature,1–3 but they do not work well for the
SDAC simulations and become unstable when the
time step is larger than about 10−5 ps. This is due
to that the QM/MM partitions of the two parts of
the EPS may become different during the inter-
nal steps of the algorithm. I use a1 = a2 = 1/2,
b1 = b2 = 1/2, a = b = 1/2 in this paper similar to
Luo, et al.4 Although the strong coupling between
the two parts of the EPS by these parameters is
considered undesirable in the original EPS paper,1

these parameters allow the use of time steps much
larger than 10−5 ps, which is needed for practical
simulations.

The most computationally expensive step in the
time-integration is the evaluation of the potential
energy. The computational cost of the EPS algo-
rithm per time step is therefore about 4 times larger

than that of the velocity Verlet algorithm.

3 Comparison between the S-
DAC QM/MM calculation
and the pure QM calculation

In the main text, I show the validness of the S-
DAC method by comparing the results of SDAC
MM/MM calculations and pure MM calculations.
Here I carry out a similar comparison between the
SDAC QM/MM calculation and the pure QM cal-
culation, with DFTB as the QM method and the
SW potential as the MM method. Due to the re-
striction of the QM computational cost, I use a
4× 4× 4 bulk Si supercell (512 atoms), which is
much smaller than the systems in the main text.
The lattice constant is fixed at 5.43Å. The initial
velocity of the PKA is the same as in Sec. 3.2.2 of
the main text (0.5 keV, 7◦ away from the z direc-
tion), and the velocities of all other atoms are set
to 0 at t = 0. The DFTB calculation is carried out
with a Γ-only k-grid to ensure that the result is di-
rectly comparable with the SDAC QM/MM result.
The SDAC criterion property and the partition pa-
rameters are the same as in Sec. 3.2.2 of the main
text (ξ full with RQM

max = 4 Å, ξ semi
min = 8, ξ

QM
min = 9,

ξ
QM
max = 10). NVE simulations are carried out with

a time step of 5× 10−6 ps for 0.05 ps, where the
total simulation time is chosen to make sure that
the PKA do not go across the periodic boundary
of the system. The PKA is placed at the bottom of
the system to make the simulation to run as long
as possible. The SDAC simulation is run without
transition forces.

Due to the small size of the system, the disor-
dered regions spread across the periodic bound-
ary (such as the two atoms seen at the top of
Fig. fig:compareshape). This is taken into ac-
count in the calculation of 〈dR〉, 〈dx〉/〈dy〉 and
〈dx〉/〈dz〉. Nevertheless, the results shown in this
section should be treated only as a verification of
the SDAC method instead of proper simulations.

Fig. 1 compares various properties in the pure
QM, SDAC QM/MM and pure MM calculation-
s. Fig. 2 shows snapshots of the amorphous re-
gions of these calculations at different time. The
SDAC vmax closely follows the QM curve until
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Figure 1: The max atomic speed, the number of
atoms in amorphous regions, and the number of
interstitials of the pure QM, SDAC QM/MM and
pure MM calculations. The number of QM/buffer
atoms of the SDAC QM/MM calculation is plotted
in the inset.
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Figure 2: Front view (xz plane) snapshots of the
amorphous pockets. The atoms in the amorphous
regions are identified similarly as in the main tex-
t. The SDAC QM/MM calculation is carried out
without transition forces. The blue-white-red col-
or coding represent the y coordinate from small to
large.
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about 0.032 ps due to the difference in the spe-
cific trajectory of the PKA. This is also seen in
Fig. 6(e) of the main text, where the ξ full w/o F tr

curve is in general close to the Tersoff/ZBL curve
but not completely the same. The SDAC QM/MM
Nam and Nint curves in Fig. 1 remain very close
after 0.032 ps. This and the snapshots in Fig. 2
confirm that the dynamics described by the SDAC
method is very close to the pure QM reference, de-
spite the dynamics described by the MM poten-
tial being drastically different, which is evident in
Figs. 1 and 2 and Table 1.

Table 1: Morphology of the disordered regions in
Fig. 2

Method 〈dR〉 (Å) 〈dx〉/〈dy〉 〈dx〉/〈dz〉
t = 0.01 ps

QM 3.527 1.011 0.3901
SDAC QM/MM 3.534 1.011 0.3913
MM 3.549 1.018 0.3984
t = 0.02 ps

QM 5.159 1.038 0.3568
SDAC QM/MM 5.172 1.039 0.3586
MM 4.532 1.674 0.8280
t = 0.03 ps

QM 6.415 2.140 0.5263
SDAC QM/MM 6.439 2.100 0.5278
MM 5.764 2.120 1.100
t = 0.04 ps

QM 7.627 2.238 0.6744
SDAC QM/MM 7.668 2.195 0.6485
MM 7.026 1.772 1.094
t = 0.05 ps

QM 8.261 1.872 0.7175
SDAC QM/MM 8.336 1.718 0.6958
MM 7.534 1.776 1.153
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