Supporting Information: Dipolar Relaxation in Thin Films of Supramolecular Stacks of Benzenecarboxamides: Insights to Enhance their Ferroelectric Characteristics

Divya B. Korlepara and Sundaram Balasubramanian*

Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India.

E-mail: bala@jncasr.ac.in

Details of MD simulations:

The molecules were considered in an all-atom representation and the interaction parameters were taken from the DREIDING force field.¹ The functional form of the force field is provided in Equations 1 and 2 below. The interaction parameters are provided in Tables S1- S6 for the sake of completeness. The atom notations are: C_3 - sp^3 , C_2 -carbon atom of amide group, C_R -aromatic carbon, H-Hydrogen, H_{hb}-Hydrogen participating in hydrogen bond, N_R-Nitrogen, O_R-Oxygen and Cl-Chlorine of tetrachloromethane.

$$E = \sum_{i=1}^{bond} K_r (r - r_o)^2 + \sum_{i=1}^{angle} K_{\theta} (\theta - \theta_0)^2 + \sum_{i=1}^{dihedral} K_{\phi} [1 + d\cos(n\phi)] + \sum_{i=1}^{improper} (1/2) K_{\omega} \left[\frac{1 + \cos(\omega_0)}{\sin(\omega_0)} \right]^2 [\cos(\omega) - \cos(\omega_0)] + E_{nb}$$

$$(1)$$

$$E_{nb} = E_{vdW} + E_Q + E_{hb}$$
where, $E_{vdW} = Aexp(-Cr_{ij}) - \frac{B}{r_{ij}^6}$

$$E_{hb} = \begin{cases} L(r) & r < r_{in} \\ S(r) * LJ(r) & r_{in} < r < r_{out} \\ 0 & r > r_{out} \end{cases}$$
(2)
Where, $LJ(r) = D_{hb} \left[5 \left(\frac{R_{hb}}{R_{DA}} \right)^{12} - 6 \left(\frac{R_{hb}}{R_{DA}} \right)^{10} \right] cos^4(\theta_{DHA})$

$$S(r) = \frac{[r_{out}^2 - r^2]^2 [r_{out}^2 + 2r^2 - 3r_{in}^2]}{[r_{out}^2 - r_{in}^2]^3}$$

$$E_Q = \frac{q_i q_j}{4\pi\varepsilon_0 r_{ij}}$$

Force-field parameters:

Atom pairs	pair style	A $(\frac{kcal}{mole})$	C (Å ⁻¹)	B $(\frac{A^6 * kcal}{mole})$
C ₂ ,C ₂	E_{vdW}	88366.7126395	0.2777754	583.0176588
C_2, C_3	E_{vdW}	88366.7126395	0.2777754	583.0176588
C_2, C_R	E_{vdW}	88366.7126395	0.2777754	583.0176588
С2,Н	E_{vdW}	17353.2373205	0.2675420	135.2359749
C_2,H_{hb}	E_{vdW}	1199.2541785	0.2718906	11.1370044
C_2, N_R	E_{vdW}	73336.2339858	0.2709990	438.3045053
C_2,O_R	E_{vdW}	69732.3531147	0.2645411	395.6858342
C ₂ ,Cl	E_{vdW}	141410.6995235	0.2813384	1051.9927862
C ₃ ,C ₃	E_{vdW}	88366.7126395	0.2777754	583.0176588
C_3, C_R	E_{vdW}	88366.7126395	0.2777754	583.0176588
С3,Н	E_{vdW}	17353.2373205	0.2675420	135.2359749
C_3,H_{hb}	E_{vdW}	1199.2541785	0.2718906	11.1370044
C_3, N_R	E_{vdW}	73336.2339858	0.2709990	438.3045053
C_3, O_R	E_{vdW}	69732.3531147	0.2645411	395.6858342
C ₃ ,Cl	E_{vdW}	141410.6995235	0.2813384	1051.9927862
C_R, C_R	E_{vdW}	88366.7126395	0.2777754	583.0176588
C_R ,H	E_{vdW}	17353.2373205	0.2675420	135.2359749
C_R, H_{hb}	E_{vdW}	1199.2541785	0.2718906	11.1370044
C_R , N_R	E_{vdW}	73336.2339858	0.2709990	438.3045053
C_R, O_R	E_{vdW}	69732.3531147	0.2645411	395.6858342
C_R ,Cl	E_{vdW}	141410.6995235	0.2813384	1051.9927862
H,H	E_{vdW}	3407.7859921	0.2580359	31.3691509
H,H_{hb}	E_{vdW}	235.5065810	0.2620786	2.5833242
H,N_R	E_{vdW}	14401.5889528	0.2612501	101.6685107
H,O_R	E_{vdW}	13693.8677062	0.2552434	91.7827423
H,Cl	E_{vdW}	141410.6995235	0.2813384	1051.9927862
H_{hb}, H_{hb}	E_{vdW}	16.2754791	0.2662500	0.2127429
H_{hb} , N_R	E_{vdW}	995.2705314	0.2653949	8.3726438
H_{hb},O_R	E_{vdW}	946.3610601	0.2591984	7.5585273
H_{hb} ,Cl	E_{vdW}	1919.1318453	0.2753033	20.0955291
N_R , N_R	E_{vdW}	60862.3208284	0.2645453	329.5111845
N_R,O_R	E_{vdW}	57871.4315792	0.2583879	297.4710649
N_R ,Cl	E_{vdW}	117357.8583902	0.2743891	790.8734337
O_R, O_R	E_{vdW}	55027.5202694	0.2525106	268.5463760
O_R ,Cl	E_{vdW}	111590.6718585	0.2677707	713.9726163
Cl,Cl	E_{vdW}	226295.4606144	0.2849939	1898.2080654

Table S1: Non-bonded interaction parameters of atoms in system.

Bonded Atoms list	K_r (kcal/mol/Å ²)	r_0 (Å)
C_2, C_R	525	1.39
C_2, N_R	525	1.34
C ₂ ,O ₂	525	1.35
C_3, C_3	350	1.53
С3,Н	350	1.09
C_3, N_R	350	1.41
C_R, C_R	525	1.39
C_R ,H	350	1.02
H_{hb} , N_R	350	0.97
C ₃ ,Cl	350	1.757

Table S2: Bond parameters

Table S3: Angle parameters

Atoms forming angles	K_{θ} (kcal/mol/ rad^2)	$ heta_0$ (°)
C ₃ ,C ₃ ,C ₃	50	109.471
C_3, C_3, C_R	50	109.471
C ₃ ,C ₃ ,H	50	109.471
C_3, C_3, N_R	50	109.471
C_3, C_R, C_R	50	120.0
C_3, N_R, C_R	50	120.0
C_3, N_R, H_{hb}	50	120.0
C_R, C_3, H	50	109.471
C_R, C_R, C_R	50	120.0
C_R, C_R, C_2	50	120.0
C_R, C_R, H	50	120.0
C_R, C_2, N_R	50	120.0
C_R, C_2, O_R	50	120.0
C_2, N_R, H_{hb}	50	120.0
H,C ₃ ,H	50	109.471
H,C_3,N_R	50	109.471
N_R, C_2, O_R	50	120.0
Cl,C ₃ ,Cl	50	109.471

Atoms List (order specific)	K_{ϕ} (kcal/mol)	d	n
C_2, C_R, C_R, C_R	3.125	-1	2
C_2, C_R, C_R, C_2	3.125	-1	2
C_2, C_R, C_R, H	3.125	-1	2
C_3, C_3, C_3, C_3	0.111	1	3
C_3, C_3, C_3, H	0.111	1	3
C_3, C_3, C_3, N_R	0.111	1	3
C_3, C_3, N_R, C_2	0.166	1	3
C_3, C_3, N_R, H_{hb}	0.166	1	3
C_R, C_2, N_R, C_3	3.125	-1	2
C_R, C_2, N_R, H_{hb}	3.125	-1	2
C_R, C_R, C_R, C_R	3.125	-1	2
C_R, C_R, C_R, H	3.125	-1	2
H,C_3,C_3,H	0.111	1	3
H,C_3,C_3,N_R	0.111	1	3
H,C_3,N_R,C_2	0.166	1	3
H,C_3,N_R,H_{hb}	0.166	1	3
H,C_R,C_R,H	0.111	1	3
H,C_R,C_R,C_R	3.125	-1	2
N_R , C_2 , C_R , C_R	0.625	-1	2
O_R, C_2, C_R, C_R	0.625	-1	2
O_R, C_2, N_R, C_3	3.125	-1	2
O_R, C_2, N_R, H_{hb}	3.125	-1	2

Table S4: Dihedral parameters

Table S5: Improper dihedral parameters

Atoms List (order specific)	K_{ω} (kcal/mol)	ω ₀ (°)
C_3, C_2, N_R, H_{hb}	40	0
C_R, C_R, C_R, C_2	40	0
C_R, C_R, C_R, H	40	0
C_R, N_R, C_2, O_R	40	0

Table S6: Hydrogen bond parameters

System	r_{in} (Å)	r _{out} (Å)	$ heta_{DHA}$ (°)
2BC	2.5	3.5	120.0
3BC	4.3	4.4	130.0
4BC	2.5	3.5	120.0
5BC	3.0	3.1	150.0
6BC	2.5	3.5	120.0

Solution Phase:

Figure S1: Results from MD simulations of preformed decamer of 3BC homologues in solution at 298.15 K (a) Normalized distribution of centroid-centroid distance and (b) Normalized distribution of twist angle.

Liquid Crystalline Phase:

System Details:

System	Number of stacks	Number of molecules per stack	Total num- ber of molecules	Total num- ber of atoms
3BC-C6	9	12	108	8424
3BC-C10	9	12	108	12312
3BC-C14	9	12	108	16200
5BC-C14	9	16	144	34848

Table S7: Details of LC phase simulations

Figure S2: Initial structures of the systems in liquid crystalline (LC) phase. All amide dipoles are oriented in the same direction. (a) N,N',N''-tri(hexyl)-1,3,5-benzenetricarboxamide (3BC-C6), (b) N,N',-N''-tri(decyl)-1,3,5-benzenetricarboxamide (3BC-C10), (c) N,N',N''-tri(tetradecyl)-1,3,5-benzenetricarboxamide (3BC-C14), and (d) N,N',N'',N'''-penta(tetradecyl)benzenepentacarboxamide (5BC-C14). Color Scheme: Green - Carbon, Tan - hydrogen, Red - Oxygen, Blue - Nitrogen.

Figure S3: The final structure of 3BC-C10 from equilibrium simulations at 460 K. (a) top view and (b) side view. The colour scheme is same as in Figure S2.

Figure S4: The final structure of 3BC-C14 from equilibrium simulations at 460 K. (a) top view and (b) side view. The colour scheme is same as in Figure S2.

Figure S5: C-C-C-C dihedral angle distribution of the alkyl tails in various systems of the LC phase at various time points of corresponding MD trajectories: (a) 3BC-C6 related to Figure 7 of main MS (b) 3BC-C10 related to Figure 7 of main MS (c) 3BC-C14 related to Figure 7 of main MS (d) 5BC-C14 related to Figure 11 of main MS (e) 5BC-C14 related to Figure 12 of main MS.

References

 Mayo, S. L.; Olafson, B. D.; Goddard, W. A. DREIDING: A Generic Force Field for Molecular Simulations. *J. Phys. Chem.* **1990**, *94*, 8897–8909.