Supporting Information for

The thermodynamics and electronic structures of P-doped spinel Co₃O₄

Lixin Xiong¹, Dixing Ni¹, Wan Xiong¹, Hewen Wang², Chuying Ouyang^{1*} ¹Department of Physics, Laboratory of Computational Materials Physics, Jiangxi Normal University, Nanchang, 330022, China

² College of Chemistry and Chemical Engineering, Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, China *Corresponding author's E-mail: cyouyang@jxnu.edu.cn

Fig. S1. The DOS of intrinsic and P-doped (O) Co_3O_4 with different magnetic configuration. The Fermi level (E_f) is set to be 0 eV.

Fig. S2. The calculated charge density difference of intrinsic (a, c, e) and P-doped (b, d, f) Co_3O_4 , the yellow and sky-blue represent negative charge and positive charge accumulation, respectively. The isosurface values are set to be 0.015 and 0.01 electron/Å³ for intrinsic and P-doped Co_3O_4 .

Fig. S3. (a), (b), (c) and (d) are the decomposed charge density of P doping at Co_{tet} in the energy range of (E_f -1.0 eV, E_f), (E_f , E_f +0.3 eV), (E_f +0.3 eV, E_f +0.7 eV) and (E_f +0.7 eV, E_f +1.0 eV), respectively. (e) presents the atomic PDOS of the Co_{oct} and O atoms closest to the doped P atom. The blue, green, red and black spheres denote the octahedral Co, tetrahedral Co, O and P atoms, respectively. The charge density contours are in transparent yellow and the isosurface values are set to be 0.009 electron/Å³.

Fig. S4. (a) and (b) are top views of the atomic structures of the (100)-B and (110)-B slab models, respectively.

Fig. S5. The side view of the atomic structure of the 5-layer surface models before (up) and after (down) optimization.

Fig. S6. The top views of the atomic structures of the 9-layer (100)-B slab model after P doping at different sites.

Fig. S7. The top views of the atomic structures of the 7-layer (110)-B slab model after P doping at different sites.

Fig. S8. (a) and (b) are the decomposed charge density of P doping at 100-B Co_{oct} in the energy range of $(E_f - 1.0 \text{ eV}, E_f)$ and $(E_f, E_f + 1.0 \text{ eV})$. (c) and (d) are the decomposed charge density of P doping at 100-B Co_{tet} in the energy range of $(E_f - 1.0 \text{ eV}, E_f)$ and $(E_f, E_f + 1.0 \text{ eV})$. The blue, green, red and black spheres denote the octahedral Co, tetrahedral Co, O and P atoms, respectively. The charge density contours are in transparent yellow, and the isosurface values are set to be 0.1, 0.01, 0.09 and 0.04 electron/Å³ for (a), (b), (c) and (d), respectively.

Fig. S9. (a) and (b) are the decomposed charge density of P doping at 110-B Co_{oct} in the energy range of $(E_f-1.0 \text{ eV}, E_f)$ and $(E_f, E_f+1.0 \text{ eV})$. (c) and (d) are the decomposed charge density of P doping at 110-B Co_{tet} in the energy range of $(E_f-1.0 \text{ eV}, E_f)$ and $(E_f, E_f+1.0 \text{ eV})$. The blue, green, red and black spheres denote the octahedral Co, tetrahedral Co, O and P atoms, respectively. The charge density contours are in transparent yellow, and the isosurface values are set to be 0.13, 0.05, 0.12 and 0.03 electron/Å³ for (a), (b), (c) and (d), respectively.