Electronic Supporting Information on

Role of Mg²⁺ and In³⁺ substitution on magnetic, magnetostrictive and dielectric properties of NiFe₂O₄ ceramics derived from nanopowders

P. N. Anantharamaiah ^{a,*}, B. Prerna Rao ^b, H. M. Shashanka^a, J. A. Chelvane^c, V. Khopkar^d,

B. Sahoo^{d,*}

^aDepartment of Chemistry, Faculty of Mathematical and Physical Sciences, M. S. Ramaiah University of Applied Sciences, Bangalore 560058, India

^bDepartment of Physics, Faculty of Mathematical and Physical Sciences, M. S. Ramaiah University of Applied Sciences, Bangalore 560058, India

^cAdvanced Magnetic Group, Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad, 500058,

India

^dMaterials Research Centre, Indian Institute of Science, Bangalore 560012, India

Table S1. Ionic size of the different metal ions.

	Ionic radii (Å)					
Ion	4-fold environment	6-fold environment				
Mg ²⁺	0.57	0.72				
Fe ³⁺	0.49	0.645				
In ³⁺	0.62	0.80				

Fig. S1. TEM images and the corresponding particle size distribution histograms of NFO, NIFO and NMFO samples, calcined at 500 °C for 2 hours. Note that the size distribution is obtained by considering many TEM micrographs.

Fig. S2. Fitted XRD pattern of the calcined NFO sample, using PCW (powder cell for windows).

Table S2: Rietveld fitting parameters, lattice parameter and theoretical density of sinteredNiFe2O4 NiFe1.8In0.2O4 and NiFe1.8Mg0.2O4.

Sample	a (Å)	$R_p(\%)$	R_{wp} (%)	χ^2	'a' (Å)	D _{theor.} (g/cm ³)
NiFe ₂ O ₄	8.3395	1.25	1.6	2.60	8.3395	5.36
NiFe _{1.8} In _{0.2} O ₄	8.3739	1.5	2.0	3.36	8.3739	5.56
$NiFe_{1.8}Mg_{0.2}O_4$	8.3469	1.3	1.8	3.23	8.3469	5.46

Fig. S3: Fit to the initial magnetization curves using the law of approach to saturation method.