Thermal Decomposition and Isomerization of Furfural and 2-Pyrone: A Theoretical Kinetic Study

Saddam Al-Hammadia and Gabriel da Silvaa*

^a Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia.

* Corresponding Author Email, <u>gdasilva@unimelb.edu.au</u>.

Contents

1.	Chemical structures, names and symbols of the molecules included in the pyrolysis process2
2.	Optimized structures of furfural and 2-pyrone pyrolysis intermediates and products4
3.	Optimized structures for transition-state of furfural and 2-pyrone pyrolysis8
4.	Structural parameters for furfural and 2-pyrone pyrolysis intermediates and products, calculated at G4 level of energy
5.	Structural parameters for furfural and 2-pyrone pyrolysis transition-state geometries, calculated at G4 level of energy
6.	Master equation parameters, rate coefficients calculations and comparing with the experimental results
7.	Rate coefficients of furfural pyrolysis to its products as a function of temperature and pressure41
8.	Branching Ratio of furfural and 2-pryone pyrolysis products as function of temperature and pressure

1. Chemical structures, names and symbols of the molecules included in the pyrolysis process.

Symbols	Naming	Chemical Structure
-	Furan	
VK	Vinylketene	
M1	Furfural	$\mathbf{r}^{\mathbf{r}}$
M2	2-Pyrone	
M3	3-Furfural	
M4	Formylvinylketene	
M5	2-Carbene-3-furfural	
M6	Furfural-4-carbene	
M7	2-Keto-3,4-pentadienal	

M8	2-Oxabicyclo[2.2.0]hex-5-en-3-one	
M9	2-Pyrone-5-carbene	
M11	2-Pyrone-4-carbene	
M12	3-Methylene-2(3H)-furanone	$\square = \square$
M13	3-Methylene-2(3H)-furanone-4-carbene	
M14	2-Pyrone-6-carbene	
M16	4-pyrone	
CBD	1,3-Cyclobutadiene	
C_4H_4	Butatriene	cc

2. Optimized structures of furfural and 2-pyrone pyrolysis intermediates and products.

CO

3. Optimized structures for transition-state of furfural and 2-pyrone pyrolysis.

TS2

TS5

TS10

TS12

TS14

TS16

TS17

TS21

TS20

4. Structural parameters for furfural and 2-pyrone pyrolysis intermediates and products, calculated at G4 level of energy.

Furfural				
С	0.95465	-2.71996	-4.56879	
С	2.29815	-2.71891	-4.48869	
С	2.71772	-1.27691	-4.36167	
С	1.58678	-0.54744	-4.37739	
0	0.40463	-1.39497	-4.32248	
н	2.94234	-3.57264	-4.5213	
Н	3.71838	-0.90553	-4.28637	
Н	1.56002	0.5211	-4.42646	
С	0.10619	-3.96577	-4.88452	
Н	0.58281	-4.90833	-5.05569	
0	-1.14767	-3.87524	-4.94121	

2-Pyrone				
0	0.32412	0.06367	-0.16579	
С	0.17252	0.02314	1.16721	
С	1.21103	-0.01915	2.02767	
С	2.53195	-0.0203	1.47826	
С	2.72021	0.02001	0.13602	
С	1.60386	0.06543	-0.78796	
Н	3.38734	-0.05379	2.14433	
Н	1.03436	-0.05075	3.09322	
Н	-0.87109	0.02872	1.45609	
0	1.63321	0.10334	-1.98526	
Н	3.70329	0.02049	-0.31492	

M3				
С	0.00748	0.	-0.00554	
0	-0.01475	0.	1.34298	
С	1.29267	0.	1.76508	
С	2.13291	0.	0.70612	
С	1.29601	0.	-0.46532	
С	1.71891	0.	-1.8655	
Н	3.2103	0.	0.71877	
Н	1.43273	0.	2.83231	
н	-0.95068	0.	-0.49903	
0	2.87396	0.	-2.22873	
н	0.88825	0.	-2.60335	

M4				
С	0.03244	0.	-0.04076	
С	0.006	0.	1.28336	
С	1.1929	0.	2.09342	
С	1.21326	0.	3.45048	
С	0.03013	0.	4.30499	
0	-1.13013	0.	3.92428	
0	0.03101	0.	-1.19648	
Н	-0.96745	0.	1.76549	
Н	2.14468	0.	1.56999	
Н	2.17278	0.	3.95547	
Н	0.24873	0.	5.39291	

M5				
С	-2.0948	0.39755	0.	
С	-2.07524	0.35404	1.49803	
С	-0.8061	0.23264	1.8497	
0	0.03699	0.21226	0.69155	
С	-0.63167	0.33205	-0.4347	
Н	-2.92736	0.42031	2.15447	
С	-2.85732	1.5352	-0.67326	
Н	-0.28365	0.15692	2.78931	
Н	-2.52002	-0.52508	-0.43751	
0	-3.54272	2.32272	-0.08107	
н	-2.73029	1.56926	-1.77198	

M6				
С	-0.76453	-0.68807	0.	
0	-0.83556	-0.68939	1.30023	
С	0.67712	-0.69426	1.70716	
С	1.47648	-0.69515	0.50148	
С	0.52523	-0.69117	-0.53457	
С	-2.07489	-0.68344	-0.73353	
0	-2.13594	-0.68186	-1.93469	
Н	0.71631	-0.69047	-1.59888	
Н	0.77986	-1.58943	2.32493	
Н	-2.97143	-0.68161	-0.08561	
Н	0.78506	0.19881	2.32707	

С	-0.22838	0.6953	0.26237	
С	0.4268	-0.48114	-0.48484	
0	-0.28338	-1.42591	-0.91685	
С	-2.91111	0.73098	0.64697	
С	-1.56974	0.71314	0.45467	
С	1.95108	-0.50141	-0.70336	
0	2.48646	-1.46274	-1.31394	
Н	0.37548	1.49862	0.62971	
Н	-3.36634	1.54841	1.16608	
Н	2.55494	0.3019	-0.33602	
Н	-3.51497	-0.07237	0.27969	

M8				
С	0.2392	-0.0463	0.	
С	1.2662	-0.68686	-0.90807	
С	0.81907	-1.91997	-0.66281	
С	-0.2858	-1.46925	0.28199	
0	-1.00198	0.29647	-0.68258	
н	2.01299	-0.27046	-1.56946	
Н	1.07594	-2.90452	-1.0305	
С	-1.52518	-0.94537	-0.451	
0	-2.59806	-1.3444	-0.74958	
Н	-0.41362	-1.91342	1.26527	
Н	0.49955	0.67955	0.76553	

0	0.34231	-1.1669	0.03466
С	-1.0849	-1.13703	-0.00491
С	-1.88874	0.02505	-0.16176
С	-1.11088	1.24856	0.02244
С	0.23768	1.24523	0.00304
С	1.03661	-0.00109	-0.00648
н	-1.64529	2.19537	0.08569
н	-1.50407	-1.13232	1.06168
н	-1.41367	-2.09935	-0.40907
0	2.23925	-0.01785	-0.02091
Н	0.83691	2.1525	0.02023

M10				
0	1.86766	-1.24397	-0.57055	
С	-2.5124	-1.09215	0.23539	
С	-1.85277	0.00448	0.06092	
С	-1.15333	1.12355	-0.12115	
С	0.1672	1.00451	-0.66545	
С	1.63131	-0.25933	0.02873	
н	-1.63336	2.07589	0.13086	
Н	-2.45628	-1.63558	1.17557	
н	-3.12797	-1.50807	-0.55894	
0	1.75337	0.53283	0.92199	
н	0.62424	1.99803	-0.80465	

M11				
0	0.02286	-1.21756	0.16226	
С	-1.34012	-0.87486	0.14788	
С	-1.66656	0.38096	-0.18294	
С	-0.58463	1.24526	-0.58349	
С	0.4257	1.29264	0.44374	
С	0.91535	-0.23257	0.00537	
Н	0.17979	1.17407	1.51706	
Н	-2.7018	0.66657	-0.34407	
Н	-1.96725	-1.74914	0.22292	
0	2.06119	-0.40438	-0.25115	
н	1.29841	1.92794	0.26191	

M12				
0	-0.00714	-1.22256	0.17226	
С	-1.36012	-0.89986	0.13788	
С	-1.63656	0.36096	-0.19294	
С	-0.41963	1.08026	-0.53849	
С	0.3957	1.44764	0.52374	
С	0.85035	-0.24257	-0.12964	
Н	0.09979	1.45907	1.58206	
Н	-2.6368	0.76657	-0.27907	
Н	-1.99225	-1.75414	0.32792	
0	2.03118	-0.36938	-0.25615	
н	1.37841	1.87294	0.30691	

0	1.51372	0.24378	0.74192	
С	1.75538	-0.78929	-0.31084	
С	0.4907	-1.12806	-0.47369	
С	-0.74551	-0.54915	-0.0484	
С	-2.05365	-0.85687	-0.22347	
С	0.02075	0.58428	0.6749	
н	-2.32862	-1.72073	-0.79183	
н	2.40977	-1.57014	0.01618	
н	2.15561	-0.38866	-1.21871	
0	-0.50493	1.62547	1.1473	
н	-2.81152	-0.23598	0.20667	

M14			
0	0.36119	-1.20193	0.00012
С	-0.93666	-1.41134	-0.00011
С	-1.77162	-0.14589	-0.00006
С	-1.09901	1.18112	-0.00001
С	0.2348	1.26602	0.00005
С	1.06216	0.06803	0.00003
Н	-1.70693	2.0841	0.00001
Н	-2.45783	-0.24953	-0.85611
Н	-2.45727	-0.24976	0.85642
0	2.2521	0.00989	-0.00009
н	0.77775	2.20391	0.00007

C	-0.26693	0.46298	0.91179	
С	0.10692	-0.96314	0.53164	
С	1.55804	0.31773	-0.55051	
н	0.07299	-1.79784	1.23464	
н	2.40038	0.4993	-1.20894	
С	-1.34199	0.07649	0.06324	
н	-0.39244	0.86811	1.94087	
0	-2.26328	-0.09407	-0.6957	
0	1.30435	-0.96237	-0.28294	
С	0.74949	1.2115	0.03796	
н	0.78232	2.28617	-0.04719	

M16				
С	-1.29467	0.93763	0.1292	
С	0.01756	0.98156	-0.39339	
С	0.32641	-0.63799	-0.88284	
С	-0.68011	-1.16604	0.07372	
0	-1.58202	-0.2913	0.4756	
Н	-2.08744	1.66909	0.17046	
Н	0.37291	1.8249	-0.97604	
Н	-0.92755	-2.2008	0.23946	
С	1.14358	0.07787	0.03992	
0	2.20279	0.11625	0.59689	
н	0.57935	-1.1434	-1.82848	

X 7	V
V	N

С	-1.74276	-0.61439	0.88896	
С	-1.14643	-1.36254	-0.04558	
С	0.27873	-1.48331	-0.3381	
С	1.24331	-0.73091	0.15725	
Н	-1.7665	-1.97154	-0.69869	
Н	-1.18614	-0.00326	1.59255	
Н	-2.8215	-0.60331	0.98557	
0	2.10834	-0.08145	0.57967	
Н	0.62094	-2.23197	-1.04398	

Furan				
С	-1.74312	-0.24465	0.	
0	-1.7819	-0.24465	1.36198	
С	-0.4894	-0.24465	1.79321	
С	0.36377	-0.24465	0.73707	
С	-0.45825	-0.24465	-0.43868	
Н	-0.13116	-0.24465	-1.46612	
Н	1.44106	-0.24465	0.78265	
Н	-0.3516	-0.24465	2.86098	
Н	-2.69867	-0.24465	-0.49604	

		CBD		
С	1.21665	0.70443	0.53857	
С	1.86904	0.07817	-0.4737	
С	1.05615	-1.10218	-0.2731	
С	0.26345	-0.52445	0.72229	
Н	2.61828	0.36468	-1.19394	
Н	1.04684	-2.0871	-0.72916	
Н	-0.09034	-0.99839	1.63034	
Н	1.32327	1.63709	1.07423	

	C ₄]	H ₄	
С	1.76603	-0.85288	-0.00028
С	1.87012	0.52172	-0.00016
С	0.85848	1.2458	-0.00072
С	-0.50592	1.42323	0.00072
н	-0.98264	1.79451	-0.90487
н	1.918	-1.41628	-0.9165
н	1.9186	-1.41705	0.91534
н	-0.98054	1.79351	0.90786

TS1				
С	-0.69602	-0.38094	-1.13446	
С	-0.75064	0.96971	-1.18015	
С	-2.15753	1.29282	-1.18197	
С	-2.85822	0.10104	-1.18485	
0	-1.94614	-0.92807	-1.04451	
Н	0.16421	-1.02812	-1.12034	
Н	0.0794	1.65251	-1.19815	
Н	-2.59842	2.27728	-1.20152	
С	-4.59542	0.45783	-0.79296	
Н	-3.53781	0.95403	-0.15505	
0	-5.54529	0.02255	-1.35427	

5.	Structural parameters for furfural and 2-pyrone pyrolysis transition-state geometries
	calculated at G4 level of energy.

TS2				
С	-0.31677	0.51665	0.00014	
С	0.74585	1.30827	-0.00005	
С	1.95011	0.55154	-0.00018	
С	1.56185	-0.74959	-0.00004	
0	0.26912	-0.96868	-0.00004	
н	0.63706	2.37948	0.00015	
Н	2.9612	0.91732	-0.00001	
Н	2.10964	-1.6753	-0.00023	
С	-1.76014	0.71787	-0.00009	
Н	-1.21006	-0.5543	0.00046	
0	-2.72346	1.43604	-0.02977	

TS3			
С	-0.25994	1.16208	0.
С	-0.16149	1.11947	1.30634
0	-0.06162	1.08308	2.46354
С	-0.60447	2.39839	-0.74968
С	-1.83772	2.83039	-1.04644
С	-3.1227	2.17123	-0.69738
0	-3.25131	1.08928	-0.17539
Н	-0.11307	0.22651	-0.52946
н	0.23354	2.99596	-1.10734
Н	-1.93675	3.75515	-1.60987
н	-4.01666	2.77003	-0.9767

1	[S4]
	. 34

С	-1.28537	-1.26374	0.00264	
С	-0.90117	0.15061	0.00083	
С	0.51142	0.46661	-0.00079	
С	1.24655	-0.69134	-0.00027	
0	-0.27973	-2.10573	0.00259	
н	-2.30623	-1.58429	0.00391	
н	-1.64049	0.92411	0.00071	
н	0.92073	1.45523	-0.00218	
С	2.69541	-1.21327	-0.00106	
н	3.2176	-0.74627	0.80772	
0	3.33767	-2.02438	-0.71742	

TS5			
С	0.0359	-0.05368	0.06242
С	0.27879	-0.01882	1.42433
С	1.6092	0.2982	1.81127
0	2.22517	0.52472	0.11116
С	1.23404	0.20032	-0.61671
С	1.93716	-0.46589	3.31828
0	2.75633	-1.19921	3.66361
н	-0.44665	-0.35326	2.15215
н	-0.88655	-0.37402	-0.39826
н	1.38924	0.06119	-1.68811
н	2.01509	1.26861	2.06949

	-
	ь
ເທ	U

С	0.21802	0.6686	0.
С	0.37275	0.21955	1.47073
С	1.76649	0.21904	1.9618
С	1.945	0.62046	3.24719
С	0.71378	0.92729	3.90111
0	0.22814	1.01279	4.97026
0	-0.4103	1.52689	-0.48784
Н	-0.12614	-0.7538	1.48149
Н	2.59219	-0.0589	1.31978
Н	2.90733	0.79616	3.72205
н	-0.1426	0.87931	2.30793

TS7				
С	-0.98521	-0.4417	0.20925	
С	-1.00778	-0.30104	1.5449	
С	0.39733	-0.13821	1.92008	
С	1.20228	-0.07007	0.71789	
С	1.15848	-1.70542	1.8955	
0	0.30988	-0.34484	-0.27502	
0	1.90949	-2.01399	2.75652	
н	0.73872	0.2756	2.85942	
н	-1.87106	-0.33871	2.18969	
н	-1.75181	-0.60222	-0.53227	
н	0.66092	-2.37913	1.17471	

ГC	Q
IJ	O.

С	-0.03058	0.30581	0.	
С	0.06251	0.58646	1.42368	
С	1.43114	0.3875	1.87233	
С	2.07885	-0.03663	0.77484	
0	1.23438	-0.1402	-0.30324	
С	-1.01902	1.31009	2.15635	
0	-0.83713	1.86489	3.20918	
н	1.82481	0.55761	2.86037	
н	3.10704	-0.30875	0.59249	
н	-0.51664	-0.46891	1.01631	
н	-1.99784	1.31582	1.64037	

TS9			
С	-0.24465	0.79511	0.
0	-0.27569	0.86181	1.35842
С	1.07661	0.89791	1.72428
С	1.97778	0.78252	0.63318
С	1.0301	0.8041	-0.47956
С	-1.55702	0.75697	-0.68396
0	-1.6654	0.68948	-1.883
н	1.28729	0.77631	-1.52777
н	1.68028	1.92535	1.42296
н	1.24046	0.74817	2.78328
Н	-2.43327	0.79414	-0.00784

С	-0.71865	0.77982	0.
С	-0.68483	0.776	1.40753
0	0.47737	0.77497	1.96076
С	1.4487	0.77902	0.6177
С	0.57922	0.78171	-0.5094
С	-1.86997	0.77303	2.3369
0	-3.00202	0.77347	1.93177
н	-1.64563	0.78095	-0.5568
н	2.04402	-0.12208	0.77258
н	-1.61557	0.77043	3.41324
Н	2.04324	1.6798	0.77745

TS11				
С	-2.73753	0.29052	-0.10489	
С	-1.47434	-0.07532	0.04442	
С	-0.53196	-1.05564	0.21375	
С	0.82944	-0.69383	-0.03005	
С	0.75668	0.88213	-0.08676	
0	1.47062	1.78065	0.11507	
0	1.87745	-1.27537	-0.16004	
Н	-3.07661	1.30034	0.08967	
Н	-3.47041	-0.42001	-0.47736	
Н	-0.7416	-1.97169	0.75226	
н	-0.54975	0.96199	-0.22356	

С	2.37718	0.55029	0.0183	
С	3.35329	-0.26904	-0.89868	
С	2.82077	-1.65003	-0.66103	
С	1.6973	-1.29408	0.35419	
0	1.11325	0.77456	-0.73809	
Н	4.16458	0.06186	-1.51287	
Н	3.12378	-2.59377	-1.06408	
С	0.53698	-0.68828	-0.42848	
0	-0.57636	-1.19194	-0.7291	
Н	1.55336	-1.86304	1.24887	
н	2.74742	1.3141	0.66977	

TS13			
С	4.67856	1.26107	0.83249
С	3.97757	2.06759	-0.13176
С	4.7242	3.39647	-0.2166
С	5.59627	3.16855	0.74963
0	6.76451	0.76381	0.17823
н	3.09781	1.79338	-0.67556
н	4.57587	4.24931	-0.84553
С	7.36	1.98991	0.05179
0	8.51311	2.33407	-0.31627
Н	5.73149	3.90981	1.50934
Н	4.37048	1.19921	1.85532

С	-0.31751	-1.15792	0.	
С	1.02117	-1.1737	0.	
С	1.77662	-0.05623	0.	
С	1.09825	1.20196	0.	
С	-0.25637	1.25206	0.	
н	-1.06199	0.04795	0.00001	
н	1.67654	2.12086	0.	
н	2.40773	-1.23414	-0.07408	
0	1.41244	-2.18508	-0.00001	
н	-2.25789	-0.04522	-0.00001	
С	-0.80731	2.18394	0.	

TS15				
0	0.49391	-1.27758	0.31864	
С	-1.49728	-1.07785	-0.10914	
С	-1.76298	0.20893	-0.22115	
С	-1.01316	1.35254	-0.03762	
С	0.29852	1.12981	0.30319	
С	1.05464	-0.17641	0.08801	
Н	-1.43889	2.34547	-0.08373	
Н	-1.74548	-1.57118	0.82451	
Н	-1.43353	-1.70737	-0.99021	
0	2.15667	0.07242	-0.38136	
Н	0.93483	1.95228	0.61132	

0	1.85973	-1.26903	-0.57089	
С	-2.49743	-1.09298	0.23583	
С	-1.86075	0.0138	0.06156	
С	-1.20304	1.15714	-0.11847	
С	0.09036	1.07182	-0.7267	
С	1.71391	-0.31151	0.0795	
н	-1.69605	2.08177	0.19571	
н	-2.38755	-1.66471	1.15293	
н	-3.14613	-1.49704	-0.53577	
0	1.79695	0.51455	0.92213	
н	0.51797	2.08615	-0.81299	

TS17			
0	-0.31751	-1.15792	0.
С	1.02117	-1.1737	0.
С	1.77662	-0.05623	0.
С	1.09825	1.20196	0.
С	-0.25637	1.25206	0.
С	-1.06199	0.04795	0.00001
Н	0.4223	2.38427	-0.03385
Н	2.85551	-0.12693	0.
Н	1.41244	-2.18508	-0.00001
0	-2.25789	-0.04522	-0.00001
н	-0.80731	2.18394	0.

0	0.34656	-1.15034	-0.79482	
С	-1.04513	-1.10808	0.04204	
С	-1.76628	0.01784	-0.20836	
С	-1.20539	1.3115	-0.09298	
С	0.2583	1.27189	0.19694	
С	1.10795	0.01622	-0.98267	
Н	0.29128	1.50821	1.27328	
Н	-2.82688	-0.11262	-0.38106	
н	-1.48807	-2.09392	0.14594	
0	2.2524	-0.11965	-1.2462	
н	0.80865	2.0893	-0.26806	

TS19				
0	-1.23916	-0.81031	0.00007	
С	-1.64025	0.50647	-0.00021	
С	-0.63081	1.38836	0.00013	
С	0.5976	0.61323	0.0001	
С	1.88916	0.95986	0.00004	
С	0.15576	-0.82087	0.00015	
Н	2.20848	1.99577	-0.00056	
Н	-1.14353	1.19044	1.26462	
Н	-2.71055	0.64888	0.00027	
0	0.78158	-1.83733	-0.00017	
Н	2.65372	0.19099	0.00032	

0	-0.98806	1.1269	0.00058	
С	-1.71932	-0.70128	0.00037	
С	-0.54035	-1.52349	-0.00086	
С	0.59171	-0.62311	-0.00078	
С	1.88016	-1.0137	0.00065	
С	0.16245	0.82289	-0.00028	
Н	2.13014	-2.06942	0.00056	
Н	-2.35792	-0.85886	-0.88028	
Н	-2.35752	-0.85935	0.88111	
0	0.8402	1.81291	-0.00037	
Н	2.68574	-0.28339	0.00201	

TS21			
0	0.32412	0.06367	-0.16579
С	0.17252	0.02314	1.16721
С	1.21103	-0.01915	2.02767
С	2.53195	-0.0203	1.47826
С	2.72021	0.02001	0.13602
С	1.60386	0.06543	-0.78796
н	3.38734	-0.05379	2.14433
н	1.03436	-0.05075	3.09322
н	0.79806	-1.28727	1.59617
0	1.63321	0.10334	-1.98526
н	3.70329	0.02049	-0.31492

(0.40881	-1.16514 1.210)52
(-0.88903	-1.37455 1.210	129
(-1.77162	-0.14589 -0.000)06
(-1.09901	1.18112 -0.000)01
(0.2348	1.26602 0.000)05
(1.06216	0.06803 0.000	03
ł	H -1.70693	2.0841 0.000	001
ł	H -2.45783	-0.24953 -0.856	511
ł	H -2.45727	-0.24976 0.856	542
(0 2.2521	0.00989 -0.000)09
ł	H 0.77775	2.20391 0.000	07

TS23				
С	-0.20627	0.78527	0.7737	
С	-0.40529	-0.7513	0.72263	
С	1.64284	0.10167	-0.47147	
н	-0.66228	-1.47559	1.48905	
н	2.53819	0.01763	-1.0704	
С	-1.58364	-0.28666	0.01521	
н	-0.44722	1.32628	1.68703	
0	-2.62935	-0.29631	-0.56554	
0	1.41756	-1.1621	-0.20399	
С	0.98123	1.18587	-0.06226	
н	1.24349	2.20928	-0.28227	

С	-1.32071	0.92343	-0.12533	
С	-0.02168	0.97828	0.40837	
С	0.31666	-0.5533	0.92207	
С	-0.6001	-1.14546	-0.11612	
0	-1.61684	-0.30507	-0.45928	
Н	-2.07341	1.67877	-0.28192	
Н	0.37543	1.8455	0.91915	
Н	-0.8301	-2.19271	-0.232	
С	1.1515	-0.00426	-0.07453	
0	2.22774	0.10508	-0.59496	
н	0.48682	-0.92377	1.94189	

TS25				
С	0.17168	0.92394	-0.6084	
С	0.17761	-0.54656	-0.79175	
С	-1.71396	-0.21905	0.3662	
Н	0.76362	-1.20529	-1.40045	
Н	-2.38517	-0.65381	1.09569	
С	1.2473	0.30017	0.1443	
Н	1.61389	1.37711	-0.99943	
0	2.24313	-0.16134	0.61134	
0	-0.85256	-1.15337	-0.0348	
С	-1.20532	1.0205	0.36768	
Н	-1.76107	1.93257	0.24613	

	Furfural deco	mposition at P= 1 atm	
Т (К)	Furfural conversion %	Number of collisions	Number of trials
1400	31.63	6.00E+05	8.00E+05
1500	62.63	2.50E+05	1.00E+06
1600	61.26	8.00E+04	5.00E+06
1700	25.34	1.00E+04	1.00E+07
1800	44.56	1.00E+04	1.00E+07
1900	64.59	1.00E+04	1.00E+07
2000	80.7	1.00E+04	1.00E+07
2100	90.97	1.00E+04	1.00E+07

6. Master equation parameters, rate coefficients calculations and comparing with the experimental results

	Furfural deco	mposition at P= 10 atm	
т (к)	Furfural conversion %	Number of collisions	Number of trials
1500	54.65	2.00E+05	1.50E+06
1600	40.35	2.50E+05	1.80E+06
1700	79.38	2.50E+05	1.80E+06
1800	97.98	2.50E+05	1.00E+05
1900	99.95	2.50E+05	1.00E+05
2000	100.00	2.50E+05	1.00E+05
2100	100.00	1.25E+05	5.00E+06

	Furfural decomp	oosition at P= 50 atm	
Т (К)	Furfural conversion %	Number of collisions	Number of trials
1500	73.82	5.24E-01	1.05E+03
1600	44.48	1.00E+06	4.00E+05
1700	64.08	5.00E+05	1.50E+06
1800	76.87	2.50E+05	1.00E+05
1900	96.72	2.50E+05	1.00E+05
2000	99.87	2.50E+05	1.00E+05
2100	99.99	2.50E+05	1.00E+05

	Furfural decom	position at P= 100 atm		
Т (К)	Furfural conversion %	Number of collisions	Number of trials	
1500	66.39	7.39E-01	1.05E+03	
1600	47.48	2.00E+06	2.00E+05	
1700	58.63	7.50E+05	8.00E+05	
1800	58.71	2.50E+05	1.00E+05	
1900	89.18	2.50E+05	1.00E+05	
2000	99.13	2.50E+05	1.00E+05	
2100	99.96	2.50E+05	1.00E+05	

2-Pyrone decomposition at P= 1 atm				
т (К)	2-Pyrone conversion %	Number of collisions	Number of trials	
1400	51.54	3.50E+06	1.00E+05	
1500	58.16	8.00E+05	3.00E+05	
1600	56.57	2.00E+05	5.00E+05	
1700	70.41	1.00E+05	1.00E+06	
1800	94.04	1.00E+05	1.00E+06	
1900	99.62	1.00E+05	1.00E+06	
2000	99.99	1.00E+05	1.00E+06	
2100	100.00	1.00E+05	1.00E+06	

Figure S1: Vibrational energy of furfural dissociation as a function of time at 1800 K and 1 atm.

Figure S2: The natural logarithm of furfural concentration versus time for a first-order reaction at 1800 K and 1 atm.

Figure S3: Comparing the high-pressure limit model with Grela and Colussi measurements.

7. Rate coefficients of furfural pyrolysis to its products as a function of temperature and pressure.

Figure S4: Calculated rate coefficients (dot points) and model fits (solid lines) of furfural pyrolysis to its main products at 10 atm and temperature range 1500 – 2100 K.

Figure S5: Calculated rate coefficients (dot points) and model fits (solid lines) of furfural pyrolysis to its main products at 50 atm and temperature range 1500 – 2100 K.

Figure S6: Calculated rate coefficients (dot points) and model fits (solid lines) of furfural pyrolysis to its main products at 100 atm and temperature range 1500 – 2100 K.

8. Branching Ratio of furfural and 2-pryone pyrolysis products as function of temperature and pressure.

Figure S7: Calculated branching fractions of furfural pyrolysis products as a function of temperature (1400 – 2100 K) and at 1 atm.

Figure S8: Calculated branching fractions of furfural pyrolysis products as a function of temperature (1500 – 2100 K) and at 10 atm.

Figure S9: Calculated branching fractions of furfural pyrolysis products as a function of temperature (1500 – 2100 K) and at 50 atm.

Figure S10: Calculated branching fractions of furfural pyrolysis products as a function of temperature (1500 – 2100 K) and at 100 atm.

Figure S11: Obtained branching ratio of 2-pyrone dissociation products as a function of temperature and (1400 – 2100 K) at 1 atm.