Nanomechanics of Antimonene Allotropes Under Tensile Loading[†]

Tanmay Sarkar Akash, a Rafsan A.S.I. Subad a,b, Pritom Bose a, and Md Mahbubul Islam *c

^aDepartment of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh

^bDepartment of Mechanical Engineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA- 02747, USA

°Department of Mechanical Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI- 48202, USA

*E-mail: mahbub.islam@wayne.edu

Supplementary Figures

For the current SW potential parameters, we found a negative out of plane Poisson's ratio at strain larger than 15% (Figure S1).

Figure S1: Strain responses of α-antimonene to the non-loading axes for (a) armchair loading and (b) zigzag loading

Figure S2: Voronoi areas for atoms in a cracked α-antimonene sample. Volumes are calculated with a uniform thickness of 1 nm. Note that, volumes of crack edge atoms (except crack-tips) are ill-defined and not used in our calculations

Figure S3: Strain rate dependent stress-strain relationships for (a) β -, and (b) α - structure of single layer antimonene nano-sheet; (i), and (ii) indicate the loading along armchair and zigzag directions respectively

Figure S4: Variation of (a) Energy and (b) Pressure with a trajectory of 1000 picoseconds.

Figure S5: Phonon Density of States of (a) β -, and (b) α - antimonene at 1K, 600K and 1000K

Figure S6: Variation of Phonon Free Energy with temperature

Figure S7: Snapshots of fracture mechanism of antimonene; buckled structure (a) armchair (b) zigzag loading; puckered structures (c) armchair (d) zigzag loading; for (i) 1K (ii) 300K (iii) 600K (iv) 900K temperatures

Figure S8: Snapshots of fracture mechanism of antimonene; buckled structure (a) armchair (b) zigzag loading; puckered structures (c) armchair (d) zigzag loading; for strain rate (i) 10⁸ s⁻¹ (ii) 10⁹ s⁻¹ (iii) 10¹⁰ s⁻¹

Table S1: (Comparison of	fracture p	properties of	different 2D	materials.
-------------	---------------	------------	---------------	--------------	------------

Mechanical Properties	Antimonene ^{This study}			Arsenene ¹		Bismuthene ²		Black Phosphorus ³		Grap	hene ⁴			
@300K	α stri	icture	β strι	icture	a stru	ıcture	β stru	icture	β stru	cture	α stru	icture	β stru	icture
	AC	ZZ	AC	ZZ	AC	ZZ	AC	ZZ	AC	ZZ	AC	ZZ	AC	ZZ
Elastic Modulus (N/m)	17.09	62.50	37.65	33.58	~20	~70	~50	~50	~26.10	~25.5	18.9	88.9	355.1	366.2
UTS (N/m)	3.18	6.17	6.51	6.31	~3.00	~5.00	~7.00	~6.80	~4.1	~4.2	1.9	4.00	21.84	31.55
Fracture Strain	0.25	0.19	0.22	0.25	0.18	~0.1	0.17	0.19	~20.0	~23.0	0.1	.054	0.09	0.13

Matlab script for replicating unit cell

```
clear all
close all
clc
C =[];
%Define length for one repeatation :
% -----
ux = input('x-length of unit cell periodicity');
uy = input('y-length of unit cell periodicity');
% Define coordinate of for one repeatation:
% -----
X = importdata('unitcell.txt'); %% format: type x y z_coordinate
type = X(:,1)
u = X(:, 2:end)
% Define antimonene atom position of the Graphene :
% -----
n = round(input('Angstrom length in X direction = ')/ux);
m = round(input('Angstrom length in Y direction = ')/uy);
s_z = 0 %z_coordinate
num = 0.0;
for j = 1:m;
 for i = 1:n;
   for c = 1:4;
     num = num+1;
                           C(num,1) = type;
     C(num,2) = u(c,1)+(i-1)*ux;
     C(num,3) = u(c,2)+(j-1)*uy;
     C(num,4) = s_z;
   end
 end
end
n_atom = length(C);
atom_dat = [(1:n_atom)' C]
```

β-Antimonene Unit Cell

Lammps sturcture data file

ntot = 16

16 atoms

1 atom types

0.00000000	14.27209851 xlo xhi
0.00000000	8.23999992 ylo yhi
0.00000000	105.63000011 zlo zhi

Atoms

1	1	0.10000000	0.10000000	52.91500006
2	1	1.28934154	2.15999994	54.55633104
3	1	3.66802463	2.15999994	52.91500006
4	1	4.85736617	0.10000000	54.55633104
5	1	0.10000000	4.21999996	52.91500006
6	1	1.28934154	6.27999990	54.55633104
7	1	3.66802463	6.27999990	52.91500006
8	1	4.85736617	4.21999996	54.55633104
9	1	7.23604926	0.10000000	52.91500006
10	1	8.42539080	2.15999994	54.55633104
11	1	10.80407389	2.15999994	52.91500006
12	1	11.99341543	0.10000000	54.55633104
13	1	7.23604926	4.219999996	52.91500006
14	1	8.42539080	6.27999990	54.55633104
15	1	10.80407389	6.27999990	52.91500006
16	1	11.99341543	4.21999996	54.55633104

α-Antimonene Unit Cell

Lammps sturcture data file

ntot = 32

32 atoms

8 atom types

0.00000000	18.92000000	xlo xhi
0.00000000	8.72000000	ylo yhi
0.00000000	105.55500000	zlo zhi

Atoms

1	1	0.29188000	2.68000000	51.85542000
2	2	0.70812000	2.68000000	54.69958000
3	3	2.65688000	4.86000000	55.07458000
4	4	3.07312000	4.86000000	52.23042000
5	5	5.02188000	2.68000000	51.85542000
6	6	5.43812000	2.68000000	54.69958000
7	7	7.38688000	4.86000000	55.07458000
8	8	7.80312000	4.86000000	52.23042000
9	1	0.29188000	7.04000000	51.85542000
10	2	0.70812000	7.04000000	54.69958000
11	3	2.65688000	9.22000000	55.07458000
12	4	3.07312000	9.22000000	52.23042000
13	5	5.02188000	7.04000000	51.85542000
14	6	5.43812000	7.04000000	54.69958000
15	7	7.38688000	9.22000000	55.07458000
16	8	7.80312000	9.22000000	52.23042000
17	1	9.75188000	2.68000000	51.85542000
18	2	10.16812000	2.68000000	54.69958000

19	3	12.11688000	4.86000000	55.07458000
20	4	12.53312000	4.86000000	52.23042000
21	5	14.48188000	2.68000000	51.85542000
22	6	14.89812000	2.68000000	54.69958000
23	7	16.84688000	4.86000000	55.07458000
24	8	17.26312000	4.86000000	52.23042000
25	1	9.75188000	7.04000000	51.85542000
26	2	10.16812000	7.04000000	54.69958000
27	3	12.11688000	9.22000000	55.07458000
28	4	12.53312000	9.22000000	52.23042000
29	5	14.48188000	7.04000000	51.85542000
30	6	14.89812000	7.04000000	54.69958000
31	7	16.84688000	9.22000000	55.07458000
32	8	17.26312000	9.22000000	52.23042000

References

- B. Yang, M. Li, J. Wang, J. Zhang, D. Liao and Y. Yue, *Phys. Chem. Chem. Phys.*, 2019, 21, 12372–12379.
 E. H. Chowdhury, M. H. Rahman, P. Bose, R. Jayan and M. M. Islam, *Phys. Chem. Chem. Phys.*, 2020, 22, 28238–28255.
 Z. Yang, J. Zhao and N. Wei, *Appl. Phys. Lett.*, 2015, 107, 023107.
- 4 A. A. Anastasi, K. Ritos, G. Cassar and M. K. Borg, Mol. Simul., 2016, 42, 1502–1511.