Supporting Information

Mechanism of Hydrogen-accelerated Melting of Polycrystalline Copper

Haishen Huang,^{*a,b*} Liqiang Ai,^{*c*} Min Chen,^{*c*} and Yongjun $L\ddot{u}^{a,*}$

(Dated: November 9, 2020)

 ^aSchool of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China
 ^bSchool of Physics and Electronic Science, Zunyi Normal University, Zunyi, 563006, P. R. China
 ^cDepartment of Engineering Mechanics, Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, P. R. China

*Corresponding author, E-mail: yongjunlv@bit.edu.cn

		ReaxFF	DFT	Expt.
fcc	a	3.61	3.63	3.61 ^a
	В	122.43	131.28	137.8 ^b
	$E_{\rm c}$	80.39	80.31	81.2 ^c
	ΔE	0.00	0.00	_
bcc	a	2.88	2.89	_
	В	109.43	129.48	_
	$E_{\rm c}$	79.54	79.45	_
	ΔE	0.86	0.86	_
a15	a	4.59	4.62	_
	В	112.15	123.36	_
	$E_{\rm c}$	77.75	78.07	_
	ΔE	2.64	2.24	_
ac	a	2.38	2.41	_
	В	119.64	95.75	_
	$E_{\rm c}$	69.02	69.68	_
	ΔE	11.38	10.63	_
dia	a	5.32	5.36	_
	В	47.32	50.42	_
	$E_{\rm c}$	40.71	56.67	_
	ΔE	39.68	23.64	_
hcp	a	2.55	2.57	_
	с	4.16	4.20	_
	В	120.16	129.78	_
	$E_{\rm c}$	80.28	80.13	_
	ΔE	0.12	0.18	_

TABLE S1: Lattice constants *a*, *c* (in unit of Å), bulk moduli *B* (in unit of GPa), cohesive energies E_c (in unit of kcal mol⁻¹) and relative energy ΔE (in unit of kcal mol⁻¹) for different phases of Cu.

^a Reference 1.

^b Reference 2.

^c Reference 3.

Figure S1. Equations of states calculated by ReaxFF and DFT for the hexagonal wurtzite type structure of CuH belonging to the space group $P6_3mc$.

Composition	Space group		ReaxFF	DFT	Other DFT	Expt.
HCu	Fm3m	а	3.87	3.89	3.90 ^a	3.7 ^b
		$E_{\rm f}$	1.35	5.76	_	_
HCu	$Pm\overline{3}m$	а	2.64	2.50	_	_
		$E_{\rm f}$	16.93	13.29	_	_
HCu	$F\overline{4}3m$	а	4.03	4.02	4.02 ^a	_
		$E_{\rm f}$	2.92	3.11	_	_
HCu	$P6_3mc$	а	2.89	2.87	2.89 ^a	2.90 ^c
		С	4.60	4.57	4.57 ^a	4.60 ^c
		$E_{\rm f}$	2.96	2.99	_	_
H ₂ Cu	$Fm\overline{3}m$	а	2.90	3.04	_	_
		$E_{\rm f}$	10.96	9.66	_	_
H_2Cu	$Pa\overline{3}$	а	4.10	4.29	_	_
		$E_{\rm f}$	10.97	9.66	_	_
H_2Cu	$Pn\overline{3}m$	а	3.65	3.72	_	_
		$E_{\rm f}$	7.08	13.07	_	_
H_2Cu	$P4_2/mnm$	a	4.78	4.78	_	_
		с	2.40	2.40	_	_
		$E_{\rm f}$	11.94	6.39	_	_

TABLE S2: Lattice constants *a*, *c* (in unit of Å), formation enthalpy $E_{\rm f}$ (in unit of kcal mol⁻¹) for different phases of copper hydride crystals.

^a Reference 4.

^b Reference 5.

^c Reference 6.

Force Field developed in this study

Cu/H ReaxFF reactive force field H. S. Huang et al.

- 39 ! Number of general parameters
 - 50.0000 ! Overcoordination parameter
 - 9.5469 ! Overcoordination parameter
 - 1.6725 ! Valency angle conjugation parameter
 - 1.7224 ! Triple bond stabilisation parameter
 - 6.8702 ! Triple bond stabilisation parameter
 - 60.4850 ! C2-correction
 - 1.0588 ! Undercoordination parameter
 - 4.6000 ! Triple bond stabilisation parameter
 - 12.1176 ! Undercoordination parameter
 - 13.3056 ! Undercoordination parameter
 - -40.0000 ! Triple bond stabilization energy
 - 0.0000 ! Lower Taper-radius
 - 10.0000 ! Upper Taper-radius
 - 2.8793 ! Not used
 - 33.8667 ! Valency undercoordination
 - 6.0891 ! Valency angle/lone pair parameter
 - 1.0563 ! Valency angle
 - 2.0384 ! Valency angle parameter
 - 6.1431 ! Not used
 - 6.9290 ! Double bond/angle parameter
 - 0.3989 ! Double bond/angle parameter: overcoord
 - 3.9954 ! Double bond/angle parameter: overcoord
 - -2.4837 ! Not used
 - 5.7796 ! Torsion/BO parameter
 - 10.0000 ! Torsion overcoordination
 - 1.9487 ! Torsion overcoordination
 - -1.2327 ! Conjugation 0 (not used)
 - 2.1645 ! Conjugation

- 1.5591 ! vdWaals shielding
- 0.1000 ! Cutoff for bond order (*100)
- 1.7602 ! Valency angle conjugation parameter
- 0.6991 ! Overcoordination parameter
- 50.0000 ! Overcoordination parameter
- 1.8512 ! Valency/lone pair parameter
- 0.5000 ! Not used
- 20.0000 ! Not used
- 5.0000 ! Molecular energy (not used)
- 0.0000 ! Molecular energy (not used)
- 0.7903 ! Valency angle conjugation parameter
- 2 ! Nr of atoms; cov.r; valency;a.m;Rvdw;Evdw;gammaEEM;cov.r2; alfa;gammavdW;valency;Eunder;Eover;chiEEM;etaEEM;n.u. cov r3;Elp;Heat inc.;n.u.;n.u.;n.u. ov/un;val1;n.u.;val3,vval4
- H 0.9479 1.0000 1.0080 1.1364 0.0232 0.9900 -0.1000 1.0000
 9.0643 4.7746 1.0000 0.0000 121.1250 4.7757 9.7732 1.0000
 -0.1000 0.0000 62.4879 2.5194 2.3785 0.2223 1.0698 0.0000
 -15.7683 2.1488 1.0338 1.0000 2.8793 0.0000 0.0000 0.0000
 Cu 1.9771 2.0000 63.5460 1.6202 0.2741 1.0000 0.1000 1.0000
 13.7875 4.7439 1.0000 0.0000 0.0000 2.9838 6.0000 0.0000
 -1.0000 0.0000 80.7000 34.9555 0.4988 0.0000 0.8563 0.0000
 -0.1243 3.1491 1.0000 4.0000 2.5791 0.0000 0.0000 0.0000
- 3 ! Nr of bonds; Edis1;LPpen;n.u.;pbe1;pbo5;13corr;pbo6 pbe2;pbo3;pbo4;Etrip;pbo1;pbo2;ovcorr
- 1
 1
 113.9232
 0.0000
 0.0000
 -0.5971
 0.0000
 1.0000
 6.0000
 0.9093

 1.7152
 1.0000
 0.0000
 1.0000
 -0.0450
 6.0710
 0.0000
 0.0000

 2
 2
 26.4159
 0.0000
 0.0000
 0.7357
 -0.2000
 0.0000
 16.0000
 0.3169
- 0.2678 -0.2000 15.0000 1.0000 -0.1593 4.1024 0.0000 0.0000
- 1 2 47.0693 0.0000 0.0000 0.9599 0.0000 1.0000 6.0000 0.3591 0.0204 1.0000 0.0000 1.0000 -0.0710 7.9806 0.0000 0.0000
- 1 ! Nr of off-diagonal terms; Ediss;Ro;gamma;rsigma;rpi;rpi2

1 2 0.9999 0.8942 14.9978 1.9994 -1.0000 -1.0000

5 ! Nr of angles;at1;at2;at3;Thetao,o;ka;kb;pv1;pv2

 $1 \ 1 \ 1 \ 0.0000 \ 27.9213 \ 5.8635 \ 0.0000 \ 0.0000 \ 0.0000 \ 1.0400$

1 2 1 89.0363 5.0589 4.8604 0.0000 0.8141 0.0000 1.4290

 $1 \ 1 \ 2 \ 59.7817 \ 20.1663 \ 1.5872 \ 0.0000 \ 2.8343 \ 0.0000 \ 1.3764$

 $2 \ 1 \ 2 \ 4.9491 \ 5.7486 \ 7.2109 \ 0.0000 \ 0.3755 \ 0.0000 \ 1.5182$

1 2 2 43.6373 1.2986 6.1920 0.0000 1.4977 0.0000 4.6641

0 ! Nr of torsions;at1;at2;at3;at4;;V1;V2;V3;V2(BO);vconj;n.u;n

0 ! Nr of hydrogen bonds;at1;at2;at3;Rhb;Dehb;vhb1

References

- 1 N. Jakse and A. Pasturel, Phys. Rev. Lett., 2003, 91, 195501.
- 2 W. F. Gale and T. C. Totemeier, Smithells Metals Reference Book 8th Edn, (Butterworth-Heinemann, Oxford, 2004).
- 3 K. Kambe, Phys. Rev., 1955, 99, 419.
- 4 Y. G. Li and P. A. Korzhavyi, Dalton. T., 2017, 46, 529.
- 5 R. Burtovyy and M. Tkacz, Solid. State. Commun., 2004, 131, 169.
- 6 P. A. Korzhavyi, I. L. Soroka, E. I. Isaev, C. Lilja, and B. Johansson, *Proc. Natl. Acad. Sci.*, 2012, 109, 686.