SUPPLEMNTARY INFORMATION

Identifying a Li-rich superionic conductor from charge-discharge

structural evolution study: Li2MnO³

Xiaofeng Zhang, Feng Zheng*, Shunqing Wu*, Zizhong Zhu

Department of Physics, OSED, Key Laboratory of Low Dimensional Condensed Matter Physics (Department of Education of Fujian Province), Jiujiang Research Institute, Xiamen University, Xiamen 361005, China

*E-mail: zhengfeng@stu.xmu.edu.cn (F. Zheng)

*E-mail: wsq@xmu.edu.cn (S.Q. Wu)

Supplementary Note

All possible lithium ions distribution within a supercell containing four formula units are considered. The formula of formation energy is defined as follows:

$$
\Delta E_f = E_{total}(Li_xMnO_3) - \left[\frac{x}{2}E_{total}(Li_2MnO_3) + \left(1 - \frac{x}{2}\right)E_{total}(MnO_3)\right]
$$
(1)

in which E_{total} is calculated total energy per formula unit of Li_xMnO₃ ($2 \ge x \ge 0$). The total energy of the initial state $(x = 2)$ and the final state $(x = 0)$ are selected as the reference points for calculating the formation energy. Furthermore, the delithiation potential is an important parameter for evaluating the performance of the cathode material, and the averaged delithiation potential associated with delithiation from the amount of x_2 to x_1 for Li_xMnO₃ (2 ≥ x ≥ 0) can be calculated by using the following expression:

$$
V = -\frac{E_{\text{total}}(Li_{x_2}MnO_3) - E_{\text{total}}(Li_{x_1}MnO_3) - (x_2 - x_1)E_{\text{total}}(Li)}{(x_2 - x_1)e}
$$
(2)

in which x_2 and x_1 are the Li composition before and after the lithium extraction from the host, respectively.

Property	t -Li _{0.5} MnO ₃	t -Li ₂ MnO ₃
Crystal system	Trigonal	Trigonal
Space group	P31m	$P\overline{3}1m$
(a, b, c) (Å)	(5.048, 5.048, 4.104)	(4.928, 4.928, 5.000)
(α, β, γ) (deg)	(90.00, 90.00, 120.00)	(90.00, 90.00, 120.00)
Li1		1a (0.0000, 0.0000, 0.0000)
Li2	1b (0.0000, 0.0000, 0.5000)	1b (0.0000, 0.0000, 0.5000)
Li3		2d (0.3333, 0.6667, 0.5000)
Mn	2c (0.3333, 0.6667, 0.0000)	2c (0.3333, 0.6667, 0.0000)
O	6k (0.6439, 0.0000, 0.2472)	6k (0.3544, 0.0000, 0.7786)

Table S1. Structural parameters of the t -Li_{0.5}MnO₃ and t -Li₂MnO₃.

Table S2. Li-ions diffusion coefficient (D_{300 K}) and migration energy (E_a) for various migration pathway in *m*-Li₂MnO₃

from CI-NEB methods.

Table S3. Calculated volume and interlayer distance of m -Li₂MnO₃ and *t*-Li₂MnO₃.

System	Volume $(\AA^3/f.u.)$	Distance (\AA)
C2/m	52.101	4.725
$P\overline{3}1m$	52.756	4.994

Table S4. Calculated Li-ion migration distance (d), activation barriers (Ea), and estimated Li-ion diffusion coefficients (D) and ion-conductivities (σ) at room temperature.

Voltage range	Δn_{Li} per formula	Phase equilibria
vs Li ⁺ /Li (V)		
$0 - 1.96$	4	Mn, $Li2O$
$1.96 - 2.44$	1	$LimnO2$, Li ₂ O
$2.44 - 3.62$	0	Li ₂ MnO ₃
> 3.62	-2	MnO ₂ , O ₂

Table S5. Calculated phase equilibria for *t*-Li₂MnO₃. The electrochemical stability window is printed in bold.

Fig. S1. The total energy calculated by the GGA+U and the single-point energy calculated by the HSE for Li_{0.5}MnO₃.

Fig. S2. Phonon band structure of t -Li_{0.5}MnO₃.

Fig. S3. Crystal structure of t -Li₂MnO₃.

Fig. S4. Calculated kinetic properties of *m*-Li2MnO3. Li⁺ migration channels (black arrow) and the barriers simulated by the NEB method for path 1, path 2, path3, path 4 and path 5.

Fig. S5. The density of states (DOS) of m -Li₂MnO₃ calculated by (a) GGA+U and (b) HSE. The density of states (DOS) of *t*-Li₂MnO₃ calculated by (c) GGA+U and (d) HSE. The zero energy is set to the Fermi level and all energies refer to the Fermi energy. Positive and negative states represent spin-up and spin-down states, respectively.