
Electronic Supporting Information for 

Amorphous Si1-yCy composite anode materials: ab initio 

molecular dynamics for behaviors of Li and Na in the 

framework 

Jaewoong Hur a,b* 

 

a Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 

44919 Republic of Korea 

b Advanced Infrastructure Materials for Sustainability Laboratory (AIMS Lab), Department of 

Civil and Environmental Engineering, Henry Samueli School of Engineering, University of 

California, Irvine, CA 92697, United States 

 

 

 

 

 

b Current affiliation and * Corresponding author 

E-mail address: j.hur@uci.edu and jwhur75@gmail.com 

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2021



 

 S1 

l Diffusion coefficient calculations 

The diffusion coefficients of Li and Na (DLi and DNa) are obtained from the ab-initio MD 

simulations of a-MxSi1-yCy phase, as predicted for the diffusivity at 300 K. The Einstein relation 

𝐷 =	 〈𝑀𝑆𝐷〉/6𝑡  with random walk patterns is used to estimate DLi and DNa values at given 

temperatures that are 1400, 1600, 2000, 2400, and 2600 K respectively as sampling points, and the 

temperatures are controlled by the Nos�́�-Hoover thermostat. The MSD1 is defined as 

 

〈𝑀𝑆𝐷〉 ≡ 	 〈|𝑟!(𝑡) − 𝑟!(0)|"〉 = 	
1
𝑁7

|𝑟!(𝑡) − 𝑟!(0)|"
#

!$%

 S.1 

 

where N is the number of particles to be averaged in a selected configuration and the angle brackets 

mean the ensemble average over the MD time period. In this MSD equation, 𝑟!(𝑡) represents a 

specific atom position at time t. For each alloy configuration, total time period for the AIMD 

simulations is up to 9 ~ 10 ps which is appropriately enough to confirm the slopes of the random 

walk profiles. The estimations of DLi and DNa values are conducted by using linear fits over the 

total time 9 ~ 10 ps, and an Arrhenius plot based on ln(DLi) and ln(DNa) as a function of reciprocal 

temperature (1000/T) is used to predict DLi and DNa values at the three different temperature 

sampling points for a-LixSi1-yCy and a-NaxSi1-yCy phases, respectively.  
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Fig. S1 Mean Squared Displacement (MSD) plots extrapolated to predict the diffusion coefficients 

(DM at 300 K; M=Li and Na) of a) Li atoms at 1600 K, 2000 K, 2400 K and b) Na atoms at 1400 

K, 1600 K, 2600 K in a-Si1-yCy composite structure.
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l Theoretical capacity calculations 

The theoretical specific capacity of a-MxSi1-yCy (M: Li and Na) is given by: 

 

𝑄&'()*(&!+,- =
𝑛𝐹

3.6 × 𝑀𝑤 S.2 

 

where n is the number of charge carrier, F is Faraday’s constant, Mw is the molecular weight of 

the amorphous active materials used as the anode materials in this work. 

 

l Structural evolutions of a-MxSi1-yCy (Mx:Lix and Nax) phases 

 

Fig. S2 Structural evolutions of a-MxSi1-yCy (Mx: a) Lix and b) Nax) phases with x ratio: 0.0, 0.75, 

1.0, and 4.0.
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l Pair correlation functions of a-Si1-yCy phase 

 

Fig. S3 Pair correlation functions of a-Si1-yCy phase for Si-C, Si-Si, and C-C pair interactions. 

The two-body structural correlations of the amorphous phases such as amorphous silicon carbide 

(a-SiC) and the a-Si1-yCy composite phase are generally comparable to one another, although the 

unit system size, its density, and composition ratio are differently used each other. In the case of 

Si-C pair bonds, the position of the gSi-C(r) displays the bond distance of ~2 Å in the a-Si1-yCy 

phase, as shown in Fig. S3, which is close to the Si-C bond length of ~1.9 Å in the a-SiC, and its 

bond length is the same as zinc-blend structure, demonstrated in previous work.2 Also, the Si-Si 

pair bonds at 1st and 2nd coordination shells included in the a-Si1-yCy phase exhibit a similar pattern 

to those of the a-SiC shown in the previous work2. In the meantime, the case of the C- C pair bonds 

resulted from the a-Si1-yCy phase reveals that whereas the gC-C(r) peak of the a-SiC which is ~3 Å, 

and this might stem from the homonuclear correlations shown in the previous work2, the peak
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of the gC-C(r), which is ~2 Å in the a-Si1-yCy phase, might indicate the presence of the partial 

heteronuclear correlations. However, most of the C-C bond pairs shown in Fig. S3 represent that 

the C-C bond pair distances are larger than the nearest neighboring distances (i.e., 1.43 and 1.55 

Å for each) of typical graphite or diamond structures. Thus, those results mean that the a-Si1-yCy 

phase is relatively well randomized to be used as an amorphous structure. 
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