Electronic Supporting Information for

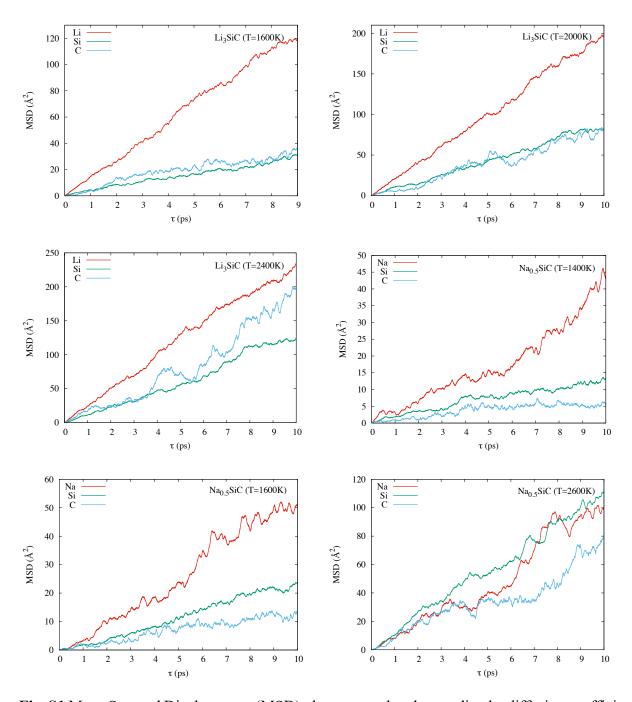
Amorphous Si_{1-y}C_y composite anode materials: *ab initio* molecular dynamics for behaviors of Li and Na in the framework

Jaewoong Hur^{a,b*}

^a Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919 Republic of Korea

^b Advanced Infrastructure Materials for Sustainability Laboratory (AIMS Lab), Department of Civil and Environmental Engineering, Henry Samueli School of Engineering, University of California, Irvine, CA 92697, United States

^b Current affiliation and ^{*} Corresponding author


E-mail address: j.hur@uci.edu and jwhur75@gmail.com

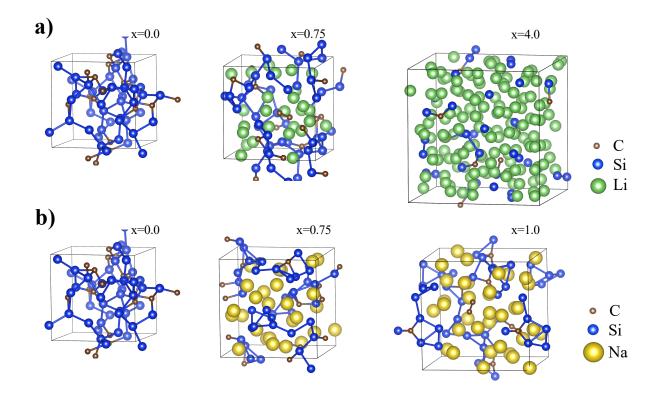
• Diffusion coefficient calculations

The diffusion coefficients of Li and Na (D_{Li} and D_{Na}) are obtained from the *ab-initio* MD simulations of a-M_xSi_{1-y}C_y phase, as predicted for the diffusivity at 300 K. The Einstein relation $D = \langle MSD \rangle / 6t$ with random walk patterns is used to estimate D_{Li} and D_{Na} values at given temperatures that are 1400, 1600, 2000, 2400, and 2600 K respectively as sampling points, and the temperatures are controlled by the Nosé-Hoover thermostat. The MSD¹ is defined as

$$\langle MSD \rangle \equiv \langle |\vec{r}_i(t) - \vec{r}_i(0)|^2 \rangle = \frac{1}{N} \sum_{i=1}^N |\vec{r}_i(t) - \vec{r}_i(0)|^2$$
 S.1

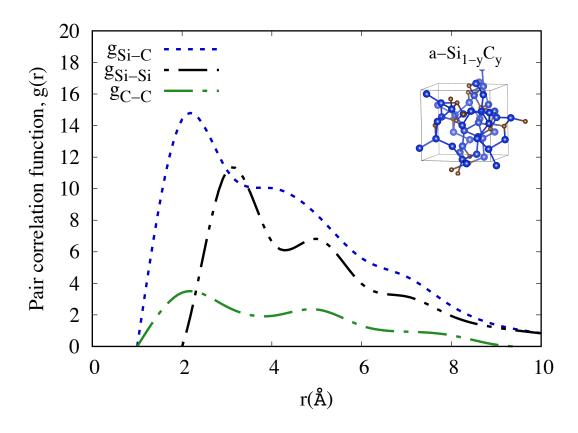
where *N* is the number of particles to be averaged in a selected configuration and the angle brackets mean the ensemble average over the MD time period. In this MSD equation, $\vec{r}_i(t)$ represents a specific atom position at time *t*. For each alloy configuration, total time period for the AIMD simulations is up to 9 ~ 10 ps which is appropriately enough to confirm the slopes of the random walk profiles. The estimations of D_{Li} and D_{Na} values are conducted by using linear fits over the total time 9 ~ 10 ps, and an Arrhenius plot based on $\ln(D_{Li})$ and $\ln(D_{Na})$ as a function of reciprocal temperature (1000/T) is used to predict D_{Li} and D_{Na} values at the three different temperature sampling points for a-Li_xSi_{1-y}C_y and a-Na_xSi_{1-y}C_y phases, respectively.

Fig. S1 Mean Squared Displacement (MSD) plots extrapolated to predict the diffusion coefficients (D_M at 300 K; M=Li and Na) of **a**) Li atoms at 1600 K, 2000 K, 2400 K and **b**) Na atoms at 1400 K, 1600 K, 2600 K in a-Si_{*l*-*y*}C_{*y*} composite structure.


• Theoretical capacity calculations

The theoretical specific capacity of $a-M_xSi_{l-y}C_y$ (M: Li and Na) is given by:

$$Q_{theoretical} = \frac{nF}{3.6 \times Mw}$$
 S.2


where n is the number of charge carrier, F is Faraday's constant, Mw is the molecular weight of the amorphous active materials used as the anode materials in this work.

Structural evolutions of a-M_xSi_{1-y}C_y (M_x:Li_x and Na_x) phases

Fig. S2 Structural evolutions of $a-M_xSi_{1-y}C_y$ (M_x: **a**) Li_x and **b**) Na_x) phases with *x* ratio: 0.0, 0.75, 1.0, and 4.0.

• Pair correlation functions of a-Si_{1-v}C_v phase

Fig. S3 Pair correlation functions of a-Si_{*l-y*}C_{*y*} phase for Si-C, Si-Si, and C-C pair interactions. The two-body structural correlations of the amorphous phases such as amorphous silicon carbide (a-SiC) and the a-Si_{*l-y*}C_{*y*} composite phase are generally comparable to one another, although the unit system size, its density, and composition ratio are differently used each other. In the case of Si-C pair bonds, the position of the $g_{Si-C}(r)$ displays the bond distance of ~2 Å in the a-Si_{*l-y*}C_{*y*} phase, as shown in Fig. S3, which is close to the Si-C bond length of ~1.9 Å in the a-SiC, and its bond length is the same as zinc-blend structure, demonstrated in previous work.² Also, the Si-Si pair bonds at 1st and 2nd coordination shells included in the a-Si_{*l-y*}C_{*y*} phase exhibit a similar pattern to those of the a-SiC shown in the previous work². In the meantime, the case of the C-C pair bonds resulted from the a-Si_{*l-y*}C_{*y*} phase reveals that whereas the $g_{C-C}(r)$ peak of the a-SiC which is ~3 Å, and this might stem from the homonuclear correlations shown in the previous work², the peak

of the $g_{C-C}(r)$, which is ~2 Å in the a-Si_{1-y}C_y phase, might indicate the presence of the partial heteronuclear correlations. However, most of the C-C bond pairs shown in Fig. S3 represent that the C-C bond pair distances are larger than the nearest neighboring distances (*i.e.*, 1.43 and 1.55 Å for each) of typical graphite or diamond structures. Thus, those results mean that the a-Si_{1-y}C_y phase is relatively well randomized to be used as an amorphous structure.

• Reference

- 1 D. C. Rapaport, *The art of molecular dynamics simulation*, Cambridge university press, 2004.
- 2 J. P. Rino, I. Ebbsjö, P. S. Branicio, R. K. Kalia, A. Nakano, F. Shimojo, and P. Vashishta, *Phys. Rev. B*, 2004, **70**, 045207.