Electronic Supporting Information:

Evaluation of the Pr + O \rightarrow PrO⁺ + e⁻ Chemi-ionization Reaction Enthalpy and Praseodymium Oxide, Carbide, Dioxide, and Carbonyl Cation Bond Energies

Maryam Ghiassee, Brandon C. Stevenson, and P.B. Armentrout*

Department of Chemistry, University of Utah, Salt Lake City, Utah 84112

*Corresponding author. E-mail armentrout@chem.utah.edu

Theoretical Calculations. Theoretical calculations were performed for the ground and low-lying excited states of Pr^+ using different basis sets and levels of theory and compared to experimental values to determine which provides the most reliable ground state values for PrO^+ , PrC^+ , PrO_2^+ , and $PrCO^+$. The B3LYP, PBE0, and CCSD(T) levels of theory were used with the ANO and Seg. SDD basis set and the calculated energies for states of Pr^+ are summarized in Table S1. Calculated energies, vibrational frequencies, and bond lengths for the ground and low-lying excited states of PrO^+ , PrC^+ , PrO_2^+ , and $PrCO^+$ calculated using these levels of theory and basis sets (along with the 6-311+G(3df) basis sets for C and O) are summarized in Tables S2, S3, S4, and S5, respectively. Additional calculations on the ground state BDEs of PrO^+ , PrC^+ , PrO_2^+ , and $PrCO^+$ were conducted using double- (X=D), triple- (X=T), and quadruple- ζ (X=Q) correlation consistent all-electron basis sets for Pr, cc-pVXZ-DK3, along with aug-cc-pVXZ-DK basis sets on C and O.

The PrO⁺ ground state is predicted to be ³H ([$\delta^1 \phi^1$] $\pi^4 \sigma^2$]) at all levels of theory and basis sets after spin-orbit correction (Table S2). The valence electrons are the 4f and 6s from Pr⁺ (⁵I, 4f³ 6s¹) and the four 2p electrons of O (³P, 2p⁴) and they combine to form σ and π bonding molecular orbitals (MOs) using the 5d orbitals on Pr (2 electrons) and the 2p orbitals on O (4 electrons). The remaining valence electrons are located in the 4f orbitals of Pr (as designated by square brackets). For an internuclear axis along the z direction, the π bonding MO arises from the Pr 5d_{xz} and 5d_{yz} interacting with the O 2p_x and 2p_y orbitals. The σ bonding MO arises from the interaction of the Pr 5d_{z2} orbital with the O 2p_z orbital. The theoretical bond length ranges between 1.729 – 1.752 Å. The first low-lying excited state of PrO⁺ is calculated to be the ${}^{3}\Gamma$ state ([$\pi^{1}\phi^{1}$] $\pi^{4}\sigma^{2}$), which lies 0.03-0.29 eV higher than the ${}^{3}H$ ground configuration. In this configuration as well as all low-lying states with a triplet spin, the bonding MOs are similar to those of the ground state but differ from the multiple occupations of the 4f orbitals by the two non-bonding electrons. In the PrO⁺ ${}^{5}I$ ($\pi^{4}\sigma^{1}$] ($\pi^{1}\delta^{1}\phi^{1}$]) excited state, one of the bonding electrons is promoted to a 4f orbital, leading to an increase of 2.51 – 3.64 eV above the ground state. This change is also accompanied by an increase in the bond length to 1.988 – 2.015 Å and decrease in the vibrational frequency, from 890 - 933 cm⁻¹ to 559 - 584 cm⁻¹.

For PrC⁺, the ground state was predicted to be ⁵I ($[\delta^1\phi^1] \sigma^1\pi^3$) at all levels of theory and basis sets after spin-orbit corrections, Table S3. However, at the B3LYP/Seg.SDD level, the ⁵H ($[\pi^1\phi^1] \sigma^1\pi^3$) is also predicted as the ground state. Additional PrC⁺ states were located, including ⁵H ($[\pi^1\phi^1] \sigma^1\pi^3$), ⁵ Φ ($[\sigma^1\delta^1] \sigma^1\pi^3$), ⁵ Π ($[\delta^2] \sigma^1\pi^3$), ⁷H ($[\sigma^1\delta^1\phi^2] \sigma^1\pi^2$), and ⁷ Σ ($[\sigma^1\delta^2] \sigma^1\pi^2$), which lie 0.00 - 0.29, 0.37 - 0.57, 0.43 - 0.62, 0.04 - 1.09, and 0.73 - 1.39 eV above the ground state, respectively.

For PrO₂⁺, the ground state is predicted to be a linear molecule with a ${}^{3}\Phi$ ([$\sigma_{u}{}^{1}\phi_{g}{}^{1}$] $\sigma_{g}{}^{2}\pi_{g}{}^{4}\pi_{u}{}^{4}$) electronic configuration at all levels of theory and basis sets (Table S4). In this configuration (molecule lying along the z axis), the $5d_{z2}$ orbital of Pr⁺ combines with $2p_{z}$ orbitals on the O atoms to form a σ_{g} bonding MO, Fig. 9. A bonding set of π_{g} MOs are formed from out-of-phase $2p_{x}$ and $2p_{y}$ orbitals on the two O atoms that combine in-phase with the Pr⁺ $5d_{xz}$ and $5d_{yz}$ orbitals, respectively. Combining the $2p_{x}$ and $2p_{y}$ orbitals in-phase with a small amount of 4f character on Pr⁺ gives largely non-bonding π_{u} MOs. Lastly, there are two electrons in nonbonding Pr 4f orbitals. The first low-lying excited state for linear PrO₂⁺ is predicted to be the ${}^{3}\Delta$ state ([$\sigma_{u}{}^{1}\delta_{u}{}^{1}$] $\sigma_{g}{}^{2}\pi_{u}{}^{4}\pi_{g}{}^{4}$), which lies 0.04 – 0.10 eV above the ground state. In this configuration, the bonding MOs are similar to those of the ground state but differ in the occupation of the 4f orbitals, as is also true for all low-lying quartet states. Additionally, non-linear OPrO⁺ species were also explored with the lowest being a ${}^{3}B_{1}$ state. This state has an OPrO angle of ~43° and Pr-O bond lengths of 2.00 Å, with an energy 0.67 - 89 eV above the linear ${}^{4}H$ state.

For the PrCO⁺ species, a ⁵H ($\pi^4\sigma^2 [\sigma^1\delta^1\phi^1] \sigma^1$) electronic state is calculated to be the ground state at all levels of theory. Here, the bonding π and σ valence electrons of C and O are in MOs similar to free carbon monoxide. The calculated CO bond lengths range between 1.114 – 1.122 (Table S5), slightly shorter than the calculated values for free CO: 1.124 and 1.123 at B3LYP and PBE0 levels of theory, respectively. Additional low-lying excited states having electronic configurations of ⁵I ($\pi^4\sigma^2 [\pi^1\delta^1\phi^1] \sigma^1$) and ⁵ $\Sigma(\pi^4\sigma^2[\sigma^1\delta^2]\sigma^1$) were calculated and lie 0.07 – 0.40 and 0.56 – 0.72 eV above the ground state, respectively. A ⁵L $\sigma^1\pi^4 [\sigma^1\delta^1\phi^1] \delta^1$ low-lying excited state was calculated, in which 6s electron has been promoted to a Pr⁺ 5d atomic orbital. The ⁵L state lies 0.48 – 0.75 eV higher in energy than the ⁵I state and correlates with the ⁵L (4f³5d¹) state of Pr⁺ (promotion energy of 0.565 eV). Other low-lying excited states having 4f³ configurations with triplet multiplicities were also calculated and lie 0.08 – 0.29 eV above the ground state.

Spin-Orbit Energy Correction. Determination of the ground state electronic energies for the different metal cation species obtained from the theoretical calculations is complicated by spinorbit (SO) effects. The theoretical relative energies are averaged over all SO levels, whereas the 0 K BDEs that are measured in the guided ion beam experiments correspond to energy differences between the ground state SO levels of reactants and products. Therefore, a more accurate comparison between theoretical and experimental BDEs can be obtained by employing a semiempirical approach to estimating the SO splitting, as done previously for third row transition metals, lanthanides, and the actinide thorium.¹⁻¹¹ For the neutral reactants and Pr⁺, the SO energy correction to the calculated theoretical energies is obtained from a weighted average of the experimental SO levels. The SO energy corrections for the ground states of Pr⁺ (⁵I) and O (³P) are 0.280 eV and 0.010 eV, respectively.¹² For PrO⁺, PrC⁺, PrO₂⁺, and PrCO⁺, the SO splitting energy is given by $E^{SO} = A \Lambda M_s$, where A is the SO splitting constant, Λ is the orbital angular momentum quantum number, and M_s is the spin quantum number for a specific SO level $\Omega = \Lambda + M_s$. E^{SO} is also equal to the summation $\sum a_i l_i \cdot s_i$, where $l_i \cdot s_i$ is the dot product of the orbital angular momentum and the spin of electron i and a_i is the SO parameter for the 4f electrons of the neodymium cation $\zeta_{4f}(Pr^+) = 649 \text{ cm}^{-1}.^{13}$

The first-order SO energy correction for PrO⁺, PrC⁺, PrO₂⁺, and PrCO⁺ where $\Lambda \neq 0$ can be determined using the values for $\zeta_{4f}(Pr^+)$ and $E^{SO} = A \Lambda M_s = \Sigma a_l l_l \cdot s_l$. For example, the ⁴H state of PrO⁺ splits into ³H_Ω levels with $\Omega = 6$, 5, and 4, where ³H₄, with $\Lambda = 5$ and $M_s = -1$, is the ground level. Using $\zeta_{4f}(Pr^+)$ and $E^{SO} = A \Lambda M_s = \Sigma a_l l_l \cdot s_l$, this ground state lies relative to the SO average value by $E^{SO} = A 5 (-1) = (2.5 a_l) = -1622 \text{ cm}^{-1} = -0.201 \text{ eV}$ so that $A = 324 \text{ cm}^{-1}$. The theoretically obtained BDE is then corrected by this SO energy and that for the products. Table S2 – S5 list the SO corrected relative energies for the various electronic states of PrO⁺, PrC⁺, PrO₂⁺, and PrCO⁺, where SO corrections of 0.201, 0.241, 0.080, and 0.291 eV, respectively, have been used.

References

- 1. M. A. Garcia and M. D. Morse, J. Chem. Phys., 2011, 135, 114304.
- 2. P. B. Armentrout, J. Chem. Phys., 2013, 139, 084305.
- 3. P. B. Armentrout and F.-X. Li, J. Phys. Chem. A, 2013, 117, 7754-7766.
- 4. J. Kim, R. M. Cox and P. B. Armentrout, J. Chem. Phys., 2016, 145, 194305.
- 5. C. S. Hinton, M. Citir and P. B. Armentrout, Int. J. Mass Spectrom., 2013, 354-355, 87-98.
- 6. R. M. Cox, P. B. Armentrout and W. A. de Jong, *Inorg. Chem.*, 2015, **54**, 3584-3599.
- 7. R. M. Cox, P. B. Armentrout and W. A. de Jong, J. Phys. Chem. B, 2016, 120, 1601-1614.
- 8. R. M. Cox, M. Citir, P. B. Armentrout, S. R. Battey and K. A. Peterson, *J. Chem. Phys.*, 2016, **144**, 184309.
- 9. M. Demireva and P. B. Armentrout, J. Chem. Phys., 2017, 146, 174302.
- 10. M. Demireva, J. Kim and P. B. Armentrout, J. Phys. Chem. A, 2016, 120, 8550-8563.
- 11. M. Demireva and P. B. Armentrout, *Top. Catal.*, 2018, **61**, 3-19.
- 12. J. E. Sansonetti and W. C. Martin, J. Phys. Chem. Ref. Data, 2005, 34, 1559-2259.
- 13. H. Lefebvre-Brion and R. W. Field, *The Spectra and Dynamics of Diatomic Molecules*, Elsevier, Amsterdam, 2004.

Species	State	Configuration	Level	Basis set	s(s+1) ^a	E(E _h)
Pr ⁺	5 <u>I</u>	$4f^{3}6s^{1}$	B3LYP	ANO	6.00	-516.774187
				Seg. SDD	6.00	-516.774225
				cc-pVDZ-DK3	6.00	-9232.831275
				cc-pVTZ-DK3	6.00	-9232.838792
				cc-pVQZ-DK3	6.00	-9232.841656
			PBE0	ANO	6.00	-516.642314
				Seg. SDD	6.00	-516.642001
				cc-pVDZ-DK3	6.00	-9232.357922
				cc-pVTZ-DK3	6.00	-9232.364070
				cc-pVQZ-DK3	6.00	-9232.368772
			CCSD (T,full)	ANO	6.00	-516.382301
				Seg. SDD	6.00	-516.328049
				cc-pVDZ-DK3	6.00	-9229.479068
				cc-pVTZ-DK3	6.00	-9229.540957
				cc-pVQZ-DK3	6.00	-9229.562535
	5L	4f ³ 5d ¹	B3LYP	ANO	6.00	-516.742984
				Seg. SDD	6.00	-516.743015
			PBE0	ANO	6.00	-516.616789
				Seg. SDD	6.00	-516.616445
			CCSD (T,full)	ANO	6.00	-516.350201
				Seg. SDD	6.00	-516.295960

Table S1. Relative energies for the ground and low-lying excited states of Pr^+ calculated at different levels of theory and basis sets, and ground electronic energies for O, C, and CO calculated at the same levels of theory.

	³ I	$4f^{3}6s^{1}$	B3LYP	ANO	3.00	-516.772181
				Seg. SDD	3.00	-516.772177
			PBE0	ANO	3.00	-516.639029
				Seg. SDD	3.00	-516.638663
			CCSD(T,full)	ANO	3.00	-516.382403
				Seg. SDD	3.00	-516.328137
	⁵ K	$4f^35d^1$	B3LYP	ANO	6.00	-516.742984
				Seg. SDD	6.00	-516.743015
			PBE0	ANO	6.00	-516.616789
				Seg. SDD	6.00	-516.616445
			CCSD (T,full)	ANO	6.00	-516.350201
				Seg. SDD	6.00	-516.295960
0	³ P	$2s^22p^4$	B3LYP	6-11+G(3df)	2.00	-75.090913
			PBE0	6-11+G(3df)	2.00	-75.012913
			CCSD (T,full)	6-11+G(3df)	2.01	-74.994166
С	³ P	$2s^22p^2$	B3LYP	6-11+G(3df)	2.00	-37.857471
			PBE0	6-11+G(3df)	2.00	-37.803210
			CCSD (T,full)	6-11+G(3df)	2.01	-37.799083
CO	$^{1}\Sigma^{+}$	$1\sigma^2 2\sigma^2 1\pi^4$	B3LYP	6-11+G(3df)	0.00	-113.356792
			PBE0	6-11+G(3df)	0.00	-113.224996
			CCSD (T,full)	6-11+G(3df)	0.00	-113.201595

a * = spin-contaminated state.

Table S2. PrO⁺ energies, bond lengths (Å), vibrational frequencies (cm⁻¹, scaled by 0.989)

calculated at different levels of theory and basis sets for Pr. Orbitals in brackets are the Pr⁺

valence	4f electrons	and orbital	s outside the	brackets are	the PrO ⁺	bonding orbitals.
						0

						Bond	Vibratio
State	Configuration	Level	Pr ⁺ basis set	s(s+1) ^a	E (E _h)	length	Frequen
³ H	$[\delta^1\phi^1] \pi^4\sigma^2$	B3LYP	ANO	2.01	-592.120476	1.752	900
			Seg. SDD	2.01	-592.121819	1.750	901
			cc-pVDZ-DK3	2.02	-9308.203320	1.750	896
			cc-pVTZ-DK3	2.02	-9308.230774	1.748	901
			cc-pVQZ-DK3	2.02	-9308.233446	1.747	901
		PBE0	ANO	2.01	-591.918306	1.733	931
			Seg. SDD	2.00	-591.910834	1.750	901
			cc-pVDZ-DK3	2.02	-9307.661210	1.732	926
			cc-pVTZ-DK3	2.02	-9307.686693	1.729	933
			cc-pVQZ-DK3	2.02	-9307.691673	1.729	932
		CCSD (T,full) ^c	ANO	2.01	-591.669475		
			Seg. SDD	2.01	-591.610574		
			cc-pVDZ-DK3	2.02	-9304.760357		
			cc-pVTZ-DK3	2.02	-9304.913575		
			cc-pVQZ-DK3	2.02	-9304.913575		
$^{3}\Gamma$	$[\pi^1\phi^1] \pi^4\sigma^2$	B3LYP	ANO	2.01	-592.113522	1.759	895
			Seg. SDD	2.01	-592.112573	1.758	895
		PBE0	ANO	2.00	-591.911724	1.740	925
			Seg. SDD	2.01	-591.911268	1.741	924
		CCSD (T,full) ^c	ANO	2.01	-591.665593		
			Seg. SDD	2.01	-591.611220		

$[\sigma^1\phi^1] \pi^4\sigma^2$	B3LYP	ANO	2.01	-592.100177	1.758	890
		Seg. SDD	2.01	-592.099575	1.758	890
	PBE0	ANO	2.01	-591.899932	1.739	919
		Seg. SDD	2.01	-591.898956	1.740	918
	CCSD (T,full) °	ANO	2.01	-591.658761		
		Seg. SDD	2.01	-591.604552		
$[\delta^2] \pi^4 \sigma^2$	B3LYP	ANO	2.02	-591.901303	1.745	902
		Seg. SDD	2.02	-591.900600	1.745	902
	PBE0	ANO	2.02	-591.652722	1.727	933
		Seg. SDD	2.02	-591.900600	1.727	933
	CCSD (T,full) °	ANO	2.02	-591.652722		
		Seg. SDD	2.02	-591.598609		
$[\pi^1\delta^1\phi^1] \pi^4\sigma^1$	B3LYP	ANO	6.00	-592.011326	2.015	560
		Seg. SDD	6.00	-592.014183	2.015	563
	PBE0	ANO	6.00	-591.807858	1.988	580
		Seg. SDD	6.00	-591.807558	1.988	579
	CCSD (T,full) °	ANO	6.01	-591.524577		
		Seg. SDD	6.01	-591.468969		
$[\delta^2\phi^1] \pi^4\sigma^1$	B3LYP	ANO	6.00	-591.979076	2.018	569
		Seg. SDD	6.00	-591.979134	2.018	569
	PBE0	ANO	6.00	-591.774539	1.993	584
		Seg. SDD	6.00	-591.805806	1.984	579
	CCSD (T,full) °	ANO	6.01	-591.521641		
		Seg. SDD	6.01	-591.466149		
$[\sigma^1\delta^2] \pi^4\sigma^1$	B3LYP	ANO	6.00	-591.992123	2.063	559
		Seg. SDD	6.00	-591.992180	2.006	559
	$[\sigma^{1}\phi^{1}] \pi^{4}\sigma^{2}$ $[\delta^{2}] \pi^{4}\sigma^{2}$ $[\pi^{1}\delta^{1}\phi^{1}] \pi^{4}\sigma^{1}$ $[\delta^{2}\phi^{1}] \pi^{4}\sigma^{1}$	[σ¹φ¹] π⁴σ²B3LYPPBE0CCSD (T,full)°[δ²] π⁴σ²B3LYPPBE0[π¹δ¹φ¹] π⁴σ¹B3LYPPBE0[δ²φ¹] π⁴σ¹β3LYP[δ²φ¹] π⁴σ²β3LYP[δ²φ¹] π⁴σ²β3LYP[σ¹δ²] π⁴σ²β3LYPβ3LYPβ3LYP	[σʰψʰ] πʰσ²B3LYPANOFPBE0AROPBE0ANOSeg.SDDCCSD (T,full)[δ²] π⁴σ²B3LYPANOSeg.SDDPBE0ANOSeg.SDDFPBE0[δ²] π⁴σ²B3LYPANOSeg.SDD[π¹δ¹φ¹] π⁴σ¹B3LYPANOSeg.SDD[σ²b] π⁴σ²B3LYPANOSeg.SDD[σ²b] π⁴σ²B3LYPANOSeg.SDD[δ²b] π⁴σ²B3LYPANOSeg.SDD[δ²b] π⁴σ²B3LYPANOSeg.SDD[δ²b] π⁴σ²B3LYPANOSeg.SDD[δ²b] π⁴σ²B3LYPANOSeg.SDD[δ²b] π⁴σ²B3LYPANOSeg.SDD[σ¹δ²] π⁴σ²B3LYPANOSeg.SDD[σ¹δ²] π⁴σ²B3LYPANOSeg.SDD[σ¹δ²] π⁴σ²B3LYPANOSeg.SDD[σ¹δ²] π⁴σ²B3LYPANOSeg.SDD[σ¹δ²] π⁴σ²B3LYPANOSeg.SDD[σ¹δ²] π⁴σ²B3LYPANOSeg.SDD	[σʰψʰ] πʰσ²B3LYPANO2.01PBE0ANO2.01PBE0ANO2.01Seg. SDD2.01CCSD (T,full)°ANO2.01[δ²] π⁴σ²B3LYPANO2.02PBE0ANO2.02PBE0ANO2.02PBE0ANO2.02[π¹δ¹ψ¹] π⁴σ²B3LYPANO2.02[π¹δ¹ψ¹] π⁴σ²B3LYPANO2.02[π¹δ¹ψ¹] π⁴σ²B3LYPANO2.02[π¹δ¹ψ¹] π⁴σ²B3LYPANO6.00Seg. SDD6.00Seg. SDD6.00[δ²ψ¹] π⁴σ²B3LYPANO6.00[δ²ψ¹] π⁴σ²B3LYPANO6.01[δ²ψ¹] π⁴σ²B3LYPANO6.00PBE0ANO6.00Seg. SDD6.00PBE0ANO6.00Seg. SDD6.00[δ²ψ¹] π⁴σ²B3LYPANO6.00[δ²ψ¹] π⁴σ²B3LYPANO6.00[δ²ψ¹] π⁴σ²B3LYPANO6.00[δ²ψ¹] π⁴σ²B3LYPANO6.00[σ¹δ²] π⁴σ²B3LYPANO6.01[σ¹δ²] π⁴σ²B3LYPANO6.01[σ¹δ²] π⁴σ²B3LYPANO6.01[σ¹δ²] π⁴σ²B3LYPANO6.01[σ¹δ²] π⁴σ²B3LYPANO6.01[σ¹δ²] π⁴σ²B3LYPANO6.01[σ¹δ²] π⁴σ²B3LYPANO6.01[σδ] [σδ] [σδ] [σδ] [σδ] [σδ]ANO6.01[σδ] [σδ] [σδ] [σδ] [σδ] [σδ] [σδ] [σ	[σ¹ψ¹] π⁴σ²B3LYPANO2.01-592.100171Seg. SDD2.01-592.099575PBE0ANO2.01-591.89932Seg. SDD2.01-591.898956CCSD (T,full)°ANO2.01-591.604552[δ²] π⁴σ²B3LYPANO2.02-591.901303Seg. SDD2.02-591.9006002.02-591.900600PBE0ANO2.02-591.900600PBE0ANO2.02-591.900600PBE0ANO2.02-591.900600PBE0ANO2.02-591.652722Seg. SDD2.02-591.90600PBE0ANO2.02-591.90600[π¹δ¹ψ¹] π⁴σ¹B3LYPANO6.00-592.011326Seg. SDD6.00-592.011326Seg. SDD6.00-591.80758[π¹δ¹ψ¹] π⁴σ¹B3LYPANO6.00-591.80758PBE0ANO6.00-591.80758Seg. SDD6.01-591.468969[δ²ψ¹] π⁴σ¹B3LYPANO6.00-591.979076[δ²ψ¹] π⁴σ¹B3LYPANO6.00-591.979134PBE0ANO6.00-591.979134PBE0ANO6.00-591.805806CCSD (T,full)°ANO6.01-591.805806[δ²ψ¹] π⁴σ¹B3LYPANO6.01-591.805806[σ¹δ²] π⁴σ¹B3LYPANO6.01-591.805806[σ¹δ²] π⁴σ¹B3LYPANO6.01-591.805806[σ¹δ²] π⁴σ¹B3LYPANO6.01<	[σ ¹ φ ¹] π ¹ σ ² B3LYPANO2.01-592.001771.758Seg. SDD2.01-592.0995751.758PBE0ANO2.01-591.8999321.739Seg. SDD2.01-591.8999561.740CCSD (T,full)°ANO2.01-591.658761Seg. SDD2.01-591.604552.[δ²] π ⁴ σ²B3LYPANO2.02-591.9013031.745PBE0ANO2.02-591.9016001.745PBE0ANO2.02-591.6527221.727CCSD (T,full)°ANO2.02-591.5986091.727CCSD (T,full)°ANO2.02-591.5986091.727[π ¹ δ ¹ φ ¹] π ⁴ σ ¹ B3LYPANO6.00-592.0113262.015Seg. SDD6.00-591.8075581.9881.988[π ¹ δ ¹ φ ¹] π ⁴ σ ¹ B3LYPANO6.00-591.8075581.988PBE0ANO6.00-591.8075581.9881.988[δ ² φ ¹] π ⁴ σ ¹ B3LYPANO6.01-591.524577[δ ² φ ¹] π ⁴ σ ¹ B3LYPANO6.00-591.979072.018[δ ² φ ¹] π ⁴ σ ¹ B3LYPANO6.00-591.524577[δ ² φ ¹] π ⁴ σ ¹ B3LYPANO6.01-591.524577[δ ² φ ¹] π ⁴ σ ¹ B3LYPANO6.00-591.9791342.018[δ ² φ ¹] π ⁴ σ ¹ B3LYPANO6.00-591.971342.018[δ ² φ ¹] π ⁴ σ ¹ B3LYPANO6.00-591.805

PBE0	ANO	6.00	-591.787460	1.978	574
	Seg. SDD	6.00	-591.787160	1.978	574
CCSD (T,full) °	ANO	6.01	-591.510093		
	Seg. SDD	6.01	-591.457303		

a * = spin-contaminated state. $b E_{rel}$ values are obtained from zero-point energy corrected energies.

^c Single point calculations using the PBE0 bond lengths for the same basis set.

Table S3. PrC⁺ energies, bond lengths (Å), vibrational frequencies (cm⁻¹, scaled by 0.989)

calculated at different levels of theory and basis sets for Pr. Orbitals in brackets are the Pr⁺

valence 4f electrons and	l orbitals	outside the	brackets are	e PrC ⁺	bonding	orbitals.
					0	

						Bond	Vibration
State	Configuration	Level	Pr ⁺ basis set	s(s+1) ^a	E (E _h)	length	Frequen
5I	$[\delta^1\phi^1]\sigma^1\pi^3$	B3LYP	ANO	6.03	-554.734616	1.986	691
			Seg. SDD	6.01	-554.731029	1.981	725
			cc-pVDZ-DK3	6.05	-9270.795190	2.009	612
			cc-pVTZ-DK3	6.02	-9270.825524	1.986	707
			cc-pVQZ-DK3	6.03	-9270.813021	1.999	653
		PBE0	ANO	6.02	-554.562744	1.963	742
			Seg. SDD	6.02	-554.562683	1.963	742
			cc-pVDZ-DK3	6.01	-9270.296302	1.972	742
			cc-pVTZ-DK3	6.01	-9270.309395	1.965	748
			cc-pVQZ-DK3	6.01	-9270.298745	1.960	753
		CCSD (T,full) °	ANO	6.13	-554.319921		
			Seg. SDD	6.13	-554.267027		
			cc-pVDZ-DK3	6.02	-9267.399409		
			cc-pVTZ-DK3	6.07	-9267.481477		
			cc-pVQZ-DK3	6.06	-9267.505605		
⁵ H	$[\pi^1\phi^1] \sigma^1\pi^3$	B3LYP	ANO	6.05	-554.733637	1.997	665
			Seg. SDD	6.05	-554.733922	1.998	662
		PBE0	ANO	6.03	-554.561900	1.973	728
			Seg. SDD	6.01	-554.555401	1.971	748
		CCSD (T,full) °	ANO	6.15	-554.320730		
			Seg. SDD	6.02	-554.262103		

⁵ Ф	$\left[\sigma^{1}\delta^{1}\right]\sigma^{1}\pi^{3}$	B3LYP	ANO	6.07	-554 720415	2 006	890
Ŧ	[00]0%	DJLTT		6.09	554 720475	2.000	550
			Seg. SDD	0.08	-334./204/3	2.008	550
		PBE0	ANO	6.01	-554.548424	1.971	745
			Seg. SDD	6.01	-554.548187	1.971	745
		CCSD (T,full) °	ANO	6.04	-554.312701		
			Seg. SDD	6.04	-554.259822		
5∏	$[\delta^2] \sigma^1 \pi^4$	B3LYP	ANO	6.07	-554.720415	2.006	570
			Seg. SDD	6.08	-554.720475	2.009	547
		PBE0	ANO	6.02	-554.549894	1.971	728
			Seg. SDD	6.02	-554.549680	1.971	728
		CCSD (T,full) °	ANO	6.05	-554.313318		
			Seg. SDD	6.05	-554.260440		
$^{7}\mathrm{H}$	$[\sigma^1\delta^1\phi^2]\sigma^1\pi^2$	B3LYP	ANO	12.00	-554.715916	2.336	490
			Seg. SDD	12.00	-554.732276	2.336	491
		PBE0	ANO	12.00	-554.559851	2.317	505
			Seg. SDD	12.00	-554.560148	2.309	510
		CCSD (T,full) °	ANO	12.01	-554.284826		
			Seg. SDD	12.01	-554.229785		
$^{7}\Sigma$	$[\sigma^1\delta^2]\sigma^1\pi^2$	B3LYP	ANO	12.00	-554.713360	2.329	483
			Seg. SDD	12.00	-554.714009	2.327	487
		PBE0	ANO	12.00	-554.542059	2.306	502
			Seg. SDD	12.00	-554.542521	2.303	506
		CCSD (T,full) ^c	ANO	12.01	-554.278690		
			Seg. SDD	12.01	-554.237199		

a * = spin-contaminated state.

 $^{\text{b}}$ E_{rel} values are obtained from zero-point energy corrected energies.

^c Single point calculations using the PBE0 bond lengths for the same basis set.

S-11

Table S4. PrO_2^+ energies, bond angles, and bond lengths (Å) calculated at different levels of theory and basis sets for Pr. CCSD(T) calculations use optimized PBE0 structures with scaled PBE0 frequencies for zero-point corrections. Orbitals in brackets are the Pr⁺ valence 4f electrons and orbitals outside the brackets are the PrO_2^+ bonding orbitals.

						∠OPrO	r(
State	Configuration	Level	Pr ⁺ basis set	s(s+1) ^a	$E(E_h)$	(□)	
³ Φ ⁻	$[\sigma_u{}^l\phi_g{}^l]\sigma_g{}^2\pi_g{}^4\pi_u{}^4$	B3LYP	ANO	2.01	-667.307370	180	
			Seg. SDD	2.01	-667.306971	180	
			cc-pVDZ-DK3	2.00	-9383.439072	180	Ĵ
			cc-pVTZ-DK3	2.00	-9383.482488	180	1
			cc-pVQZ-DK3	2.00	-9383.496913	180	1
		PBE0	ANO	2.01	-667.031046	180	
			Seg. SDD	2.01	-667.030329	180	
			cc-pVDZ-DK3	2.00	-9382.822504	180	
			cc-pVTZ-DK3	2.00	-9382.865837	180	
			cc-pVQZ-DK3	2.00	-9382.879581	180	
		CCSD (T,full) ^c	ANO	2.01	-666.765705		
			Seg. SDD	2.01	-666.710241		
			cc-pVDZ-DK3	2.00	-9379.860822		
			cc-pVTZ-DK3	2.01	-9380.086085		
			cc-pVQZ-DK3	2.00	-9380.068461		
$^{3}\Delta$	$[\sigma_u{}^1\delta_u{}^1]\sigma_g{}^2\pi_u{}^4\pi_g{}^4$	B3LYP	ANO	2.01	-667.304877	180	
			Seg. SDD	2.01	-667.304214	180	
		PBE0	ANO	2.01	-667.030719	180	
			Seg. SDD	2.01	-667.029925	180	
		CCSD (T,full) °	ANO	2.01	-666.767023	180	
			Seg. SDD	2.01	-666.711504	180	

³ H	$[\delta_u{}^1\varphi_g{}^1]\sigma_g{}^2\pi_u{}^4\pi_g{}^3$	B3LYP	ANO	2.01	-667.231871	180
			Seg. SDD	2.01	-667.227371	180
		PBE0	ANO	2.01	-667.028856	180
			Seg. SDD	2.01	-666.951275	180
		CCSD (T,full) °	ANO	2.01	-666.767076	180
			Seg. SDD	2.00	-666.627485	180
$^{3}\Sigma$	$[\delta_u{}^2]\sigma_g{}^2\pi_u{}^4\pi_g{}^4$	B3LYP	ANO	2.01	-667.218120	180
			Seg. SDD	2.01	-667.215480	180
		PBE0	ANO	2.00	-666.941025	180
			Seg. SDD	2.01	-666.940368	180
		CCSD (T,full) °	ANO	2.01	-666.673390	180
			Seg. SDD	2.01	-666.616900	180
$^{3}A_{1}$	$1a_1^2 1b_1^2 2a_1^2 1b_2^2 1a_2^2$	B3LYP	ANO	2.02	-667.285983	42.72
			Seg. SDD	2.02	-667.285920	43.09
		PBE0	ANO	2.01	-666.996647	42.72
			Seg. SDD	2.01	-666.996095	42.73
		CCSD (T,full) °	ANO	2.00	-666.729037	
			Seg. SDD	2.00	-666.674167	
$^{3}\mathrm{B}_{1}$	$1a_1^2 1b_1^2 2a_1^2 1b_2^2 1a_2^2$	B3LYP	ANO	2.00	-667.284767	42.79
			Seg. SDD	2.01	-667.285362	43.08
		PBE0	ANO	2.01	-667.006080	42.79
			Seg. SDD	2.01	-667.005658	42.81
		CCSD (T,full) °	ANO	2.00	-666.734990	
			Seg. SDD	2.00	-666.680238	
$^{3}A_{1}$	$1a_1^2 1b_2^2 1a_2^2 1b_1^2 2b_2^2$	B3LYP	ANO	2.02	-667.247053	109.31
			Seg. SDD	2.02	-667.246674	109.31
		PBE0	ANO	2.03	-666.964735	109.31

	Seg. SDD	2.03	-666.963927	109.31
CCSD (T,full) °	ANO	2.10	-666.718635	
	Seg. SDD	2.10	-666.632352	

a * = spin-contaminated state. $b E_{rel}$ values are obtained from zero-point energy corrected energies.

^c Single point calculations using the PBE0 bond lengths for the same basis set.

Table S5. PrCO⁺ energies and bond lengths calculated at various levels of theory and basis sets. CCSD(T) calculations use optimized PBE0 structures with scaled PBE0 frequencies for zeropoint corrections. Orbitals in brackets are the Pr⁺ valence 4f electrons and orbitals outside the brackets are the PrCO⁺ bonding orbitals.

								E _{rel} (eV) ^b	
	Configuration	Level	Pr ⁺ basis set	s(s+1)	E(E _h)	r(CO)(Å)	r(MC)(Å)	wo SO	W
	$\pi^4 \sigma^2 \left[\sigma^1 \delta^1 \phi^1 ight] \sigma^1$	B3LYP	ANO	6.00	-630.142184	1.116	3.056	0.02	0
			Seg. SDD	6.00	-630.142368	1.116	3.045	0.00	0
			cc-pVDZ-DK3	6.00	-9346.235867	1.118	2.997		
			cc-pVTZ-DK3	6.00	-9346.235582	1.116	3.000		
			cc-pVQZ-DK3	6.00	-9346.257812	1.116	3.040		
		PBE0	ANO	6.00	-629.880919	1.114	3.001	0.00	0.
			Seg. SDD	6.00	-629.880794	1.114	2.990	0.00	0
			cc-pVDZ-DK3	6.00	-9345.590304	1.117	3.000		
			cc-pVTZ-DK3	6.00	-9345.621376	1.117	3.000		
			cc-pVQZ-DK3	6.00	-9345.633250	1.117	3.000		
		CCSD (T,full) °	ANO	6.00	-629.596809			0.00	0
			Seg. SDD	6.00	-629.542259			0.00	0
			cc-pVDZ-DK3	6.01	-9342.682168				
			cc-pVTZ-DK3	6.01	-9342.707569				
			cc-pVQZ-DK3	6.01	-9342.839751				
	$\pi^4 \sigma^2 [\pi^1 \delta^1 \phi^1] \sigma^1$	B3LYP	ANO	6.00	-630.125481	1.118	2.840	0.46	0
			Seg. SDD	6.00	-630.125677	1.118	2.830	0.44	0
		PBE0	ANO	6.00	-629.865367	1.116	2.795	0.43	0
			Seg. SDD	6.00	-629.865268	1.116	2.781	0.43	0
		CCSD (T,full) ^c	ANO	6.00	-629.585268				
			Seg. SDD	6.00	-629.538845				

$\pi^4\sigma^2[\sigma^1\delta^1\varphi^1]\delta^1$	B3LYP	ANO	6.00	-630.116532	1.122	2.820	0.72	0
		Seg. SDD	6.00	-630.116257	1.117	2.988	0.72	0
	PBE0	ANO	6.00	-629.859050	1.119	2.781	0.60	0
		Seg. SDD	6.00	-629.857978	1.115	2.965	0.63	0
$\pi^4 \sigma^2 [\sigma^1 \delta^2] \sigma^1$	B3LYP	ANO	6.00	-630.123204	1.116	3.091	0.53	0
		Seg. SDD	6.00	-630.123322	1.116	3.081	0.45	0
	PBE0	ANO	6.00	-629.862767	1.115	3.033	0.49	0
		Seg. SDD	6.99	-629.862560	1.114	3.020	0.49	0
	CCSD (T,full) °	ANO	6.00	-629.583583			0.36	0
		Seg. SDD	6.00	-629.529031			0.37	0
$\pi^4 \sigma^1 [\pi^1 \delta^2 \phi^1] \sigma^1$	B3LYP	ANO	3.00	-630.140210	1.117	2.997	0.00	0
		Seg. SDD	3.00	-630.140383	1.117	2.981	0.05	0
	PBE0	ANO	3.00	-629.877501	1.115	2.952	0.02	0
		Seg. SDD	3.00	-629.877362	1.115	2.936	0.01	0
	CCSD (T,full) °	ANO	3.01	-629.596233			0.02	0.
		Seg. SDD	3.01	-629.541645			0.02	0.
$\pi^4 \sigma^1 [\sigma^1 \delta^2 \phi^1] \sigma^1$	B3LYP	ANO	3.00	-630.136882	1.116	3.075	0.10	0.
		Seg. SDD	3.00	-630.137021	1,116	3.063	0.14	0.
	PBE0	ANO	3.01	-629.874241	1.114	3.024	0.18	0.
		Seg. SDD	3.00	-629.874061	1.114	3.011	0.11	0.
	CCSD (T,full) °	ANO	3.01	-629.592891			0.11	0.
		Seg. SDD	3.01	-629.538356			0.11	0.

a * = spin-contaminated state.

 $^{\text{b}}$ E_{rel} values are obtained from zero-point energy corrected energies.

^c Single point calculations using the PBE0 bond lengths for the same basis set.