Supporting Information for

Pentagonal B₂C monolayer with offering extremely high theoretical capacity for Li-/Na-ion batteries

Zishuang Cheng,^{a,b} Xiaoming Zhang,^{a,b,c*} Hui Zhang,^{a,b} Jianbo Gao,^d Heyan Liu,^{a,b,c} Xiao Yu,^{a,b} Xuefang Dai,^{a,b} Guodong Liu,^{a,b*} and Guifeng Chen^{a,b*}

^aState Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China.

^bSchool of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China. ^cState Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization,

Baotou Research Institute of Rare Earths, Baotou,014030,China.

^d Centre of Excellence for Advanced Materials, Dongguan 523808, China.

E-mail: zhangxiaoming87@hebut.edu.cn; gdliu1978@126.com; cgfchen@hebut.edu.cn.

Contents of Supporting Information

- Evolution of the potential energy versus simulation time for Penta-B₂C before and after adsorption Li/Na during AIMD simulations. (Figure S1)
- Changes of potential energy with the distance between a single Li/Na atom and Penta-B₂C. (Figure S2)

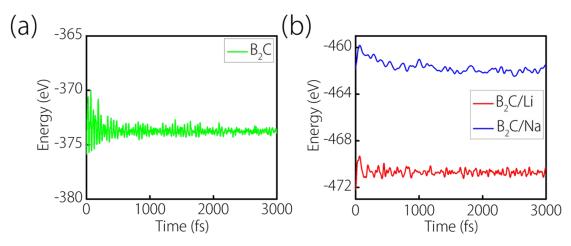


Figure S1 Evolution of the potential energy versus simulation time for Penta- B_2C (a) before and (b) after adsorption Li/Na during AIMD simulations at the temperature of 300 K.

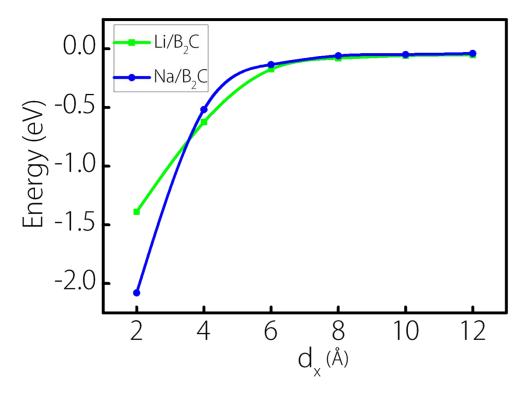


Figure S2 Changes of potential energy with the distance between a single Li/Na atom and Penta- B_2C .