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Calculation Procedures

Binding site prediction. We used the code CAVITY (Y. X. Yuan, J. F. Pei, L. H. Lai, Curr. Pharm. Design 2013, 
19, 2326-2333) to determine the potential binding sites of each conformation for molecular docking. In case of 
multiple sites for one conformation, the pocket with the maximal potential binding affinity was chosen for 
docking.

Molecular docking. We used the open-source program Vina (O. Trott, A. J. Olson, J. Comput. Chem. 2010, 31, 

455-461) for molecular docking. Default parameters were chosen, e.g., the grid size is 22×22×22, while the 

energy_range, exhaustiveness and num_modes are set to be 3, 8 and 8, respectively. The grid center is set to 

be the geometric center of the conformational cavities obtained from CAVITY.The docking score given by Vina 

is the binding free energy  (in a unit of kcal/mol) between the conformation  and the ligand . Open Babel ∆𝐺𝑖,𝑗 𝑖 𝑗

(N. M. O'Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, G. R. Hutchison, J. Cheminformatics 

2011, 3, 33.) was used to preprocess the file format of proteins and ligands.

Conformational ensemble of IDPs.  The conformational ensemble of the oncoprotein c-Myc was borrowed 
from a previous study of large-scale MD simulations (F. Jin, C. Yu, L. H. Lai, Z. R. Liu, PLoS Comput. Biol. 
2013, 9, e1003249), giving 16716 conformations. More specifically, Hammoudeh et al. (D. I. Hammoudeh, A. 
V. Follis, E. V. Prochownik, S. J. Metallo, J. Am. Chem. Soc. 2009, 131, 7390-7401.) measured the chemical 
shifts and several NOE signal of c-Myc370-409 with and without small molecules by NMR, and predicted the 
average dihedral angles of the main chain; Jin et al. utilized these angles to construct and optimized the single 
apo and holo structures which were further used as initial conformation in MD simulations; Jin et al. then 
conducted large-scale (with a total simulation time of 34.5 μs) replica-exchange MD using AMBER software 
and AMBER99SB force field, where the ionic strength of the system is set to 0.2 M.

Ligand library.  The positive and negative control ligands (10074-A4 and AJ292) as well as 6 ligand 
molecules (YC-1101, YC-1201~YC-1205) obtained from virtual screening by Yu et al. (C. Yu, X. Niu, F. Jin, Z. 
Liu, C. Jin, L. Lai, Sci. Rep. 2016, 6, 22298) were selected in priority. Additional 275 ligands were selected from 
the library of SPECS, a worldwide provider of compound management services besides being a main supplier 
of screening compounds in drug discovery. Specifically, small compound set with amount of more than 50 mg, 
which contains ~140,000 compounds, were selected from the SPECS libraries. Based on the calculated 
fingerprint of each compound, Leader-Follower clustering and K-Mean clustering were conducted in sequence. 
Finally, the 275 target compounds were obtained. In total, 283 ligands were used in our study.

Real dataset-I.  Each of the 16716 conformations from the ensemble of c-Myc was docked with each of the 

283 ligands above, and  for each ligand is calculated with Eq.(2) of the main text. The distribution 𝐾(𝑎𝑝𝑝)
𝑎,𝑗

properties were analysed detailedly before (B. Chong, Y. G. Yang, C. G. Zhou, Q. J. Huang, and Z. R. Liu, J. 

Chem Inf. Model., 2020, 60, 4967).

Synthetic datasets.  The ensemble distribution of  for each ligand  is approximately described by a ∆𝐺𝑖,𝑗 𝑗

Gaussian distribution with a mean  and a variance , i.e., . The distributions of 𝜇𝑗 𝜎2
𝑗 𝑝(∆𝐺𝑖,𝑗) = 𝑁(∆𝐺𝑖,𝑗|𝜇𝑗,𝜎

2
𝑗)

 and  for ligands of the synthetic datasets are also assumed to be Gaussian, whose parameters were 𝜇𝑗 𝜎𝑗

inferred from the real dataset-I with 283 ligands to give  and 𝑝(𝜇𝑗) = 𝑁(𝜇𝑗| ‒ 5.1,0.652)

 (in units of kcal/mol). The apparent association constant is calculated by 𝑝(𝜎𝑗) = 𝑁(𝜎𝑗|0.44,0.082)
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 according to the reference (B. Chong, Y. G. Yang, C. G. Zhou, Z. R. Liu, J. Chem 
𝑙𝑛𝐾(𝑎𝑝𝑝)

𝑎,𝑗 = ‒
1

𝑅𝑇(𝜇𝑗 ‒
𝜎2

𝑗

2𝑅𝑇)
Inf. Model., 2020, 60, 4967). 

Real dataset-II.  To provide a validation set, we selected additional 828 ligands randomly (which are different 

from those in real dataset-I) from the library of SPECS and docked them with all 16716 conformations from the 

ensemble of c-Myc. The rusults were used as the dataset to validate the effects of the rUCB algorithm.

Large ligand library.  A large library with 28479 ligands (including dataset-I and dataset-II) from SPECS was 

constructed. The rUCB algorithm was used to screen this large library to target c-Myc.
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Details of the rUCB algorithm

The aim of the rUCB algorithm is to predict (pick out) top  ligands with the largest  from a library 𝑚 𝐾(𝑎𝑝𝑝)
𝑎,𝑗

with  ligands, by scheduling docking process with reinforcement learning approach, within a limited number 𝑁

of docking times . Unless otherwise stated,  is adopted in this study. The rUCB algorithm is 𝑇 𝑇 = 2𝑁

composed of the following steps:

Initialization: Dock each ligand once, with IDP conformation randomly selected from the ensemble. The total 

number of docking times in this stage is .𝑁

Loop ( ): Choose one ligand to dock once (with IDP conformation randomly selected from the 𝑡 = 𝑁 + 1,𝑇

ensemble) by

— Pre-choose  ligands that maximize an indexed function as𝑚

.                                                                       
arg max

𝑗 [𝑙𝑜𝑔𝐾(𝑎𝑝𝑝)
𝑎,𝑗 (𝑡) + 𝑐𝜎𝑙𝑜𝑔𝐾, 𝑗(𝑡)

1
𝑛𝑗(𝑡)]

(S1)

We adopt  with a logarithm operation to avoid the improper influence of the fact that 𝑄𝑗 = 𝑙𝑜𝑔𝐾(𝑎𝑝𝑝)
𝑎,𝑗

 spans a few orders of magnitude.  is the number of times that the ligand-  has been 𝐾(𝑎𝑝𝑝)
𝑎,𝑗 𝑛𝑗(𝑡) 𝑗

docked prior to .  is the estimate of  based on the prior docking results, while 𝑡 𝑙𝑜𝑔𝐾(𝑎𝑝𝑝)
𝑎,𝑗 (𝑡) 𝑙𝑜𝑔𝐾(𝑎𝑝𝑝)

𝑎,𝑗

 is the estimated standard deviation of . For , a straightforward  𝜎𝑙𝑜𝑔𝐾, 𝑗(𝑡) 𝑙𝑜𝑔𝐾𝑎,𝑖,𝑗 𝑛𝑗(𝑡) = 1

determination of  is not available, then a default value of 0.35 inferred from the real docking 𝜎𝑙𝑜𝑔𝐾, 𝑗(𝑡)

dataset with 283 ligand is used. For in  a range of ] with  and large , the range of 𝑡 [𝑁 + 1:𝑇 𝑇 = 2𝑁 𝑁

variation of the  term in usual UCB algorithm is very small, so we discard the  term. An 𝑙𝑛𝑡 𝑙𝑛𝑡

advantage of this simplification is that we need not update the index function for all ligands at each step 

, i.e., we need only update the index value of the ligand that was docked in the latest round and its 𝑡

ranking. 

— Among  pre-chosen ligands, choose the one that minimize another indexed function as𝑚

,                                                                       
arg min

𝑗 [𝑙𝑜𝑔𝐾(𝑎𝑝𝑝)
𝑎,𝑗 (𝑡) ‒ 𝑐𝜎𝑙𝑜𝑔𝐾, 𝑗(𝑡)

1
𝑛𝑗(𝑡)]

(S2)

and dock it once (with IDP conformation randomly selected from the ensemble).

Final prediction: Pick  ligands that maximize  as the predicted top ligands from virtual 𝑚 𝑙𝑜𝑔𝐾(𝑎𝑝𝑝)
𝑎,𝑗 (𝑇)

screening.

Example codes are provided as the attached iDockLearn.rar.
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Results and Discussion

An Oversimplified Analysis on the docking times 

By ignoring the difference of  for ligands, the indexed function in selecting ligands in Eq. (S1) 𝜎𝑙𝑜𝑔𝐾, 𝑗

becomes

.                                                                                   
𝑙𝑜𝑔𝐾(𝑎𝑝𝑝)

𝑎,𝑗 (𝑡) + 𝑐'
1

𝑛𝑗(𝑡)

(S3)

When the total docking number is large, the indexed function reaches a constant (denoted as ), so it 𝑙𝑜𝑔𝐾(0)
𝑎

yields

                                                                              
𝑙𝑜𝑔𝐾(𝑎𝑝𝑝)

𝑎,𝑗 + 𝑐' 1
𝑛𝑗

= 𝑙𝑜𝑔𝐾(0)
𝑎 .

(S4)

So

                                                                                

𝑛𝑗 =
𝑐'2

(𝑙𝑜𝑔𝐾(𝑎𝑝𝑝)
𝑎,𝑗 ‒ 𝑙𝑜𝑔𝐾(0)

𝑎 )2
.

(S5)

It diverges when . In rUCB algorithm,  is estimated from the prior docking 𝑙𝑜𝑔𝐾(𝑎𝑝𝑝)
𝑎,𝑗 = 𝑙𝑜𝑔𝐾(0)

𝑎 𝑙𝑜𝑔𝐾(𝑎𝑝𝑝)
𝑎,𝑗

results, which introducing fluctuation. So we add an extra term to reflect such an effect:

                                                                                

𝑛𝑗 =
𝑐'2

(𝑙𝑜𝑔𝐾(𝑎𝑝𝑝)
𝑎,𝑗 ‒ 𝑙𝑜𝑔𝐾(0)

𝑎 )2 + 𝛾2
,

(S6)

which is an Cauchy-Lorentz function.

Analyses on Eq. (S2) gives similar result.
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Figure S1. Influence of the learning parameter  for the reversible UCB algorithm. Synthetic dataset with  is used. (a) The 𝑐 𝑁 = 104

precision as a function of . (b) The performance loss as a function of . (c) The optimal  as a function of the positive rate, where red 𝑐 𝑐 𝑐
squares were derived from (a) to achieve the maximal precision, and green circles were derived from (b) to achieve the minimal 
performance loss, while the black lines represents a compromise as  where  is the positive rate defined as 𝑐 = 𝑒1.96 ‒ 1.9𝑥0.16

𝑥
. The total docking number in each run is two times the ligand number, i.e., . Each data point in (a) and (b) was 𝑚/𝑁 𝑇 = 2𝑁

averaged from 200 runs of simulation with different random seeds. 
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Figure S2. Effects of the uniform algorithm (curves with symbols) as functions of the average docking times per ligand, . 𝑇/𝑁
Synthetic dataset with  is used. The positive rate is 0.1% (curves with squares) or 1% (curves with circles). The rUCB 𝑁 = 104

results with  were shown as horizontal lines for comparison. Each data point was averaged from 200 runs of simulation. 𝑇/𝑁 = 2

Figure S3. Effects of the rUCB algorithm (filled symbols) in comparison with those of the uniform algorithm (opened symbols) as 

functions of the ligand number . Synthetic datasets with a positive rate of 1% (squares) and  (circles) were used. The 𝑁 0.1%

average docking times per ligand is 2, i.e., . Each data point was averaged from 500 runs of simulation.𝑇/𝑁 = 2
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Figure S4. Distribution of docking times under rUCB for synthetic dataset with   and (a-d) , 𝑁 = 105 𝑚 = 1, 10, 100, 1000

respectively, to give a positive rate of 0.001%, 0.01%, 0.1%, 1%. . Results from 400 simulations were averaged for each 𝑇/𝑁 = 2

panel, where the blue line is the fitted Cauchy-Lorentz function.

Figure S5. Validation of rUCB on the real dataset-II with 828 ligands. For each data point, 2000 runs of simulation were conducted to 

get average.
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Figure S6. Distribution of  for 1111 ligands as a combination of Real dataset-I and Real dataset-II. The location of YC-
𝑙𝑜𝑔𝐾(𝑎𝑝𝑝)

𝑎,𝑗  

1205 with  was indicated by an arrow. 
𝑙𝑜𝑔𝐾(𝑎𝑝𝑝)

𝑎,𝑗 = 4.70


