Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2021

Predicting the Structural, Electronic and Magnetic Properties of Few Atomiclayer Polar Perovskite

Shaowen Xu^{a,b*}, Fanhao Jia^{a,b*}, Shunbo Hu^{b,a}, Athinarayanan Sundaresan^c, Nikita V.Ter-Oganessian^d Alexander P. Pyatakov^e, Jinrong Cheng^{b,a}, Jincang Zhang^{b,a}, Shixun Cao^{a,b}, and Wei Ren^{a,b,†}

^aPhysics Department, International Center for Quantum and Molecular Structures, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai 200444, China

^bMaterials Genome Institute, State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China ^cChemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India

^dInstitute of Physics, Southern Federal University, Rostov-on-Don, 344090, Russia ^eM.V. Lomonosov Moscow State University, Faculty of Physics 1-2 Leninskiye Gory, GSP-1, Moscow, 119991, Russia

†<u>renwei@shu.edu.cn</u>

*These authors contributed equally to this work.

Table S1. The elastic constants (N/m) of few-AL KTaO systems. The criteria of elastic stability in 2D systems were described in Ref [1], where a stable structure should simultaneously satisfy $C_{11} > 0$ & $C_{66} > 0$ & $C_{11} > |C_{12}|$ for 2AL and Type I 3AL (3AL_I) cases, while the Type II 3AL (3AL_{II}) system should meet $C_{11} > 0$ & $C_{66} > 0$ & $C_{11}C_{22} > C_{12}C_{12}$.

System	Elastic Constants (N/m)				
	C_{11}	C ₁₂	C_{66}	C ₂₂	
2AL	124.8	35.3	6.4	/	
3AL _I	135.0	46.2	18	/	
$3AL_{II}$	168.7	45.8	8.0	45.8	

Table S2. The PBE optimized in-plane lattice parameter a (Å) which is defined by the distance between adjacent K atom. The energy gap (eV) was calculated by using the HSE06 method.

System	a (Å)	Gap (eV)	
2AL	3.919	3.51	
4AL	3.941	3.21	
6AL	3.981	3.10	
8AL	3.990	2.75	
10AL	3.997	2.17	
Bulkcubic	3.984	3.64 ^[2]	

Table S3. The PBE optimized in-plane lattice parameter a (Å) which is defined by the distance between adjacent K atom. The magnetic moment M ($\mu_{\rm B}$ /u.c.) of odd-AL systems, where the "*u.c.*" is defined by the in-plane area of EL unit-cell displayed in Fig. 1.

System	<i>a</i> (Å)		M (μ_B/uc)	
	Type I	Type II	Type I	Type II
3AL	4.038	3.922	1	0
5AL	4.039	3.989	0.93	0.92
7AL	4.042	3.997	0.76	0.75
9AL	4.043	4.004	0.48	0.28

Figure S1. The side and top views of the ideal structures of 2D (a) KTaO₃ (EL), (b) K_2TaO_4 (Type I), and (c) KTa₂O₅ (Type II).

Figure S2. The *ab* initio molecular dynamics (AIMD) simulations were carried out for 1 *ps* with a time step of 1 *fs* at room temperature (300 K) within the canonical ensemble.

Figure S3. (a)-(d) are the layer resolved projected density of states (PDOS). (e)-(h) are the atomic orbital PDOS. (a) and (e) are for bulk KTO; (b) and (f) are for EL (2AL) system; (c) and (g) are for Type I (3AL); (d) and (h) are for Type II (3AL).

Figure S4. The out-of-plane polarization P_z (μ C/cm²) of EL KTaO systems and EL SrTiO systems as functions of AL thickness. The P_z was calculated by integrating the charge density, which is dependent on the effective thickness of slab. Here, we applied an additional 2.5 Å space on each side of the slab to calculate the effective volume Ω .

Reference

[1] M. Maździarz, 2D Materials 6, 048001 (2019).

[2] G. Jellison Jr, I. Paulauskas, L. Boatner and D. Singh, Physical Review B 74, 155130 (2006).