## **Supporting Information:**

# Effect of Asymmetric External Reorganization Energy on Electron and Hole Transport in Organic Semiconductors

Tao Xu, Kangying Cao, Changwei Wang and Shiwei Yin\*

Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an City 710119, People's Republic of China

#### Index

| Table S1 The detailed SS-PFF parameters for molecules NAP, PEP, PFN and PFP1                                                       |
|------------------------------------------------------------------------------------------------------------------------------------|
| Table S2. The electron couplings for ET and HT reactions based on the optimized neutral                                            |
| supercells and containing electron/hole supercells                                                                                 |
| Table S3. Electron-vibration couplings for some significant vibrations whose $\lambda_i \! > \! 5 \text{cm}^{\text{-1}}$ during ET |
| and HT processes in NAP molecule7                                                                                                  |
| Table S4. Electron-vibration couplings for some significant vibrations whose $\lambda_i > 5cm^{-1}$ during                         |
| ET and HT processes in PEN molecule                                                                                                |
| Table S5. Electron-vibration couplings for some significant vibrations whose $\lambda_i\!>\!5cm^{\text{-}1}$ during ET             |
| and HT processes in PFN molecule                                                                                                   |
| Table S6. Electron-vibration couplings for some significant vibrations whose $\lambda_i > 5cm^{-1}$ during                         |
| ET and HT processes in PFP molecule                                                                                                |
| Table S7. The effective vibration frequency and its Huang-Ryhs factors for ET and HT reactions                                     |
| under the one-mode approximation9                                                                                                  |
| Table S8. The reorganization energies including internal and external contributions for different                                  |
| CT channels9                                                                                                                       |

### Table S1 The detailed SS-PFF parameters for molecules NAP, PEP, PFN and PFP.

| anion | cation | neutral |
|-------|--------|---------|
|       |        |         |

NAP

|     |       |        |       |                   |                       |                       | <br>H H |                |                |
|-----|-------|--------|-------|-------------------|-----------------------|-----------------------|---------|----------------|----------------|
|     |       | bon    | d     | 12                | h                     | 12                    | h       | 12             | h              |
|     | st    | retch  | ing   | к <sub>b</sub>    | 00                    | к <sub>b</sub>        | 00      | к <sub>b</sub> | 00             |
|     |       | 1      | 2     | 392.3             | 1.4083                | 399.3                 | 1.4036  | 487.7          | 1.3734         |
|     |       | 1      | 1     | 452.2             | 1.3881                | 446.4                 | 1.3892  | 396.8          | 1.4144         |
|     |       | 1      | 4     | 385.4             | 1.0880                | 405.8                 | 1.0830  | 399.1          | 1.0842         |
|     |       | 2      | 3     | 372.0             | 1.4202                | 387.6                 | 1.4116  | 393.7          | 1.4195         |
|     |       | 2      | 5     | 385.4             | 1.0880                | 402.4                 | 1.0844  | 397.5          | 1.0848         |
|     |       | 3      | 3     | 285.6             | 1.4520                | 319.7                 | 1.4299  | 313.5          | 1.4312         |
|     |       | angl   | e     | k                 | θ                     | k                     | θ       | k              | θ              |
|     | ł     | bendi  | ng    | mθ                | 0                     | n <sub>θ</sub>        | 0       | n <sub>θ</sub> | 0              |
|     | 1     | 1      | 2     | 24.06             | 120.09                | 24.44                 | 120.17  | 25.06          | 120.30         |
|     | 2     | 3      | 3     | 24.13             | 118.33                | 24.45                 | 118.01  | 24.91          | 118.83         |
|     | 4     | 1      | 2     | 24.33             | 119.73                | 25.80                 | 119.62  | 25.46          | 120.13         |
|     | 2     | 3      | 2     | 31.04             | 123.33                | 30.62                 | 121.98  | 31.09          | 122.34         |
|     | 1     | 2      | 3     | 24.44             | 121.58                | 24.80                 | 120.83  | 25.70          | 120.87         |
|     | 4     | 1      | 1     | 24.57             | 120.18                | 25.68                 | 120.22  | 25.41          | 119.58         |
|     | 1     | 2      | 5     | 24.64             | 119.96                | 25.77                 | 119.75  | 25.46          | 120.43         |
|     | 5     | 2      | 3     | 24.97             | 118.47                | 25.75                 | 119.43  | 25.63          | 118.71         |
| tor | siona | l rota | ation | $k_{\phi}$ -anion | k <sub>o</sub> -catio | on k <sub>ø</sub> -ne | eutral  | γ              | n              |
| 1   | 1     | 2      | 3     | 0.542             | 0.618                 | 0.6                   | 575     | 180.0          | 2              |
| 1   | 1     | 2      | 5     | 0.494             | 0.550                 | 0.6                   | 528     | 180.0          | 2              |
| 4   | 1     | 2      | 3     | 0.466             | 0.642                 | 0.6                   | 570     | 180.0          | 2              |
| 4   | 1     | 2      | 5     | 0.452             | 0.715                 | 0.7                   | 705     | 180.0          | 2              |
| 2   | 1     | 1      | 4     | 0.554             | 0.632                 | 0.6                   | 510     | 180.0          | 2              |
| 2   | 1     | 1      | 2     | 0.654             | 0.595                 | 0.6                   | 590     | 180.0          | 2              |
| 4   | 1     | 1      | 4     | 0.509             | 0.764                 | 0.6                   | 660     | 180.0          | 2              |
| 1   | 2     | 3      | 2     | 0.402             | 0.449                 | 0.4                   | 168     | 180.0          | 2              |
| 1   | 2     | 3      | 3     | 0.399             | 0.513                 | 0.5                   | 538     | 180.0          | 2              |
| 5   | 2     | 3      | 2     | 0.472             | 0.540                 | 0.5                   | 554     | 180.0          | 2              |
| 5   | 2     | 3      | 3     | 0.434             | 0.535                 | 0.5                   | 522     | 180.0          | 2              |
| 2   | 3     | 3      | 2     | 0.325             | 0.319                 | 0.3                   | 361     | 180.0          | 2              |
|     | PFN   |        |       |                   |                       |                       |         |                |                |
|     |       | bon    | d     | k <sub>b</sub>    | b <sub>0</sub>        | k <sub>b</sub>        | $b_0$   | k <sub>b</sub> | b <sub>0</sub> |

5H | 2C

4H

ų

,Н

|      | st    | retch  | ing    |                   |                      |                       |         |                                    |                |
|------|-------|--------|--------|-------------------|----------------------|-----------------------|---------|------------------------------------|----------------|
|      |       | 2      | 3      | 390.6             | 1.4108               | 397.9                 | 1.4123  | 404.3                              | 1.4170         |
|      |       | 3      | 3      | 279.0             | 1.4604               | 312.8                 | 1.4371  | 306.1                              | 1.4394         |
|      |       | 1      | 2      | 403.4             | 1.4032               | 408.6                 | 1.4042  | 494.0                              | 1.3712         |
|      |       | 2      | 5      | 418.1             | 1.3658               | 533.9                 | 1.3087  | 477.9                              | 1.3366         |
|      |       | 1      | 1      | 479.8             | 1.3748               | 451.2                 | 1.3883  | 414.0                              | 1.4068         |
|      |       | 1      | 4      | 432.8             | 1.3575               | 538.2                 | 1.3101  | 488.5                              | 1.3331         |
|      |       | angl   | e      | k                 | θ                    | k,                    | θ       | k,                                 | θ              |
|      | t     | endi   | ng     | θ                 | 0                    | θ                     | 0       | θ                                  | 0              |
|      | 2     | 3      | 2      | 35.83             | 124.45               | 35.93                 | 122.69  | 37.39                              | 122.89         |
|      | 2     | 3      | 3      | 24.35             | 117.78               | 24.80                 | 118.65  | 25.63                              | 118.56         |
|      | 1     | 2      | 3      | 24.95             | 122.29               | 25.29                 | 121.37  | 26.19                              | 121.06         |
|      | 3     | 2      | 5      | 41.64             | 120.86               | 43.36                 | 121.22  | 43.21                              | 120.76         |
|      | 1     | 2      | 5      | 42.51             | 116.85               | 44.58                 | 117.41  | 44.55                              | 118.19         |
|      | 1     | 1      | 2      | 24.88             | 119.94               | 25.18                 | 119.98  | 25.89                              | 120.39         |
|      | 2     | 1      | 4      | 38.03             | 119.56               | 38.43                 | 119.57  | 38.99                              | 120.73         |
|      | 1     | 1      | 4      | 37.64             | 120.50               | 38.07                 | 120.46  | 38.61                              | 118.89         |
| tors | siona | l rota | ation  | $k_{\phi}$ -anion | k <sub>o</sub> -cati | on k <sub>ø</sub> -ne | eutral  | γ                                  | n              |
| 1    | 2     | 3      | 2      | 0.327             | 0.418                | B 0.4                 | 428     | 180.0                              | 2              |
| 5    | 2     | 3      | 2      | 0.396             | 0.609                | 0.5                   | 592     | 180.0                              | 2              |
| 1    | 2     | 3      | 3      | 0.257             | 0.375                | 0.3                   | 394     | 180.0                              | 2              |
| 5    | 2     | 3      | 3      | 0.385             | 0.646                | <b>0.</b> 0           | 610     | 180.0                              | 2              |
| 2    | 3     | 3      | 2      | 0.271             | 0.281                | 0.2                   | 316     | 180.0                              | 2              |
| 1    | 1     | 2      | 3      | 0.362             | 0.464                | 0.4                   | 491     | 180.0                              | 2              |
| 4    | 1     | 2      | 3      | 0.419             | 0.718                | 0.1                   | 745     | 180.0                              | 2              |
| 1    | 1     | 2      | 5      | 0.417             | 0.622                | 2 0.0                 | 563     | 180.0                              | 2              |
| 4    | 1     | 2      | 5      | 0.329             | 0.941                | 0.9                   | 956     | 180.0                              | 2              |
| 2    | 1     | 1      | 4      | 0.539             | 0.705                | 0.0                   | 563     | 180.0                              | 2              |
| 2    | 1     | 1      | 2      | 0.461             | 0.427                | 0.4                   | 489     | 180.0                              | 2              |
| 4    | 1     | 1      | 4      | 0.707             | 0.982                | 2. 0.8                | 841     | 180.0                              | 2              |
|      | PEN   | ſ      |        |                   |                      | 8Н 9Н<br>             | 10H<br> | н н<br>                            |                |
|      |       |        |        |                   | 7H                   |                       |         | $\checkmark$                       | Н              |
|      |       |        |        |                   | 10                   |                       |         |                                    | Ĩ              |
|      |       |        |        |                   | н                    |                       |         | $\checkmark \checkmark \checkmark$ | Υ <sub>H</sub> |
|      |       |        |        |                   |                      | I I                   | I<br>H  | I I<br>H H                         |                |
|      |       | bone   | d      | k.                | h                    | k.                    | h       | k.                                 | h              |
|      | st    | retch  | ing    | к <sub>b</sub>    | 00                   | к <sub>b</sub>        | 00      | Кb                                 | 00             |
|      |       | 1      | 6      | 391.3             | 1.0861               | 402.6                 | 1.0831  | 398.3                              | 1.0842         |
|      |       | 2      | 1      | 406 5             | 1 4071               | 410.3                 | 1 4044  | 474 3                              | 1 4004         |
|      |       | 2      | 1<br>2 |                   | 1.4613               | -10.J<br>285.6        | 1 4530  | -727.J<br>787 2                    | 1 4553         |
|      |       | ∠<br>2 | ∠<br>3 | 275.1<br>406 5    | 1 4013               | 205.0<br>414 0        | 1 /025  | 202.J<br>200 1                     | 1 /122         |
|      |       | ∠<br>2 | 5<br>/ | 416 7             | 1.4072               | 717.7<br>/17 /        | 1 /007  | 155 5                              | 1.4132         |
|      |       | 5      | 4      | τ10./             | 1.4022               | 71/.4                 | 1.4007  | +33.3                              | 1.3001         |

|      |        | 1             | 1               | 288.2                 | 1 1/02                 | 202.5                          | 1 4457     | 282.8                 | 1 4530     |
|------|--------|---------------|-----------------|-----------------------|------------------------|--------------------------------|------------|-----------------------|------------|
|      |        | 4<br>1        | 4<br>5          | 200.2                 | 1.4492                 | 292.3                          | 1.4437     | 262.0                 | 1.4350     |
|      |        | 4             | 5               | JOI.1<br>172 2        | 1.4236                 | 380.4<br>480.7                 | 1.4217     | 516.8                 | 1.4551     |
|      |        | 5             | 6               | 475.5                 | 1.3700                 | 400.7                          | 1.3729     | 364.3                 | 1.3017     |
|      |        | 0<br>7        | 1               | 200.7<br>207.4        | 1.4100                 | 208.0                          | 1.41/0     | 204.2                 | 1.4317     |
|      |        | /<br>8        | 1               | 207.4<br>207.1        | 1.00/1                 | 398.0<br>208.0                 | 1.0045     | 394.2<br>204.0        | 1.0050     |
|      |        | 0             | 5               | 2000                  | 1.0070                 | <i>39</i> 8.0<br>400.2         | 1.0031     | 205.0                 | 1.0050     |
|      |        | 7<br>0001     | 3               | 300.0                 | 1.0672                 | 400.2                          | 1.0040     | 393.9                 | 1.0652     |
|      | 1      | angi<br>Sandi | e<br>na         | $\mathbf{k}_{\theta}$ | $\theta_0^{}$          | $\mathbf{k}_{\mathbf{\theta}}$ | $\theta_0$ | $\mathbf{k}_{\theta}$ | $\theta_0$ |
|      | ן<br>1 |               | <u>ווק</u><br>ר | 22.05                 | 110.10                 | 22.65                          | 110 57     | 24.02                 | 110.02     |
|      | 1      | 2             | ے<br>1          | 25.65                 | 119.10                 | 25.05                          | 110.37     | 24.05                 | 119.02     |
|      | 3<br>1 | Z             | 1               | 30.02                 | 121.87                 | 30.13                          | 122.99     | 30.23                 | 122.28     |
|      | 1      | 6             | 5               | 25.66                 | 120.03                 | 25.00                          | 120.21     | 25.36                 | 120.22     |
|      | 1      |               |                 |                       |                        |                                |            |                       |            |
|      | 0      | 6             | 6               | 25.65                 | 119.35                 | 24.95                          | 119.73     | 25.28                 | 119.22     |
|      | 2      | 1             | 2               | 24.94                 | 121.81                 | 24.93                          | 122.89     | 25.38                 | 121.95     |
|      | 3      | 2             | 2               | 24.02                 | 119.04                 | 23.63                          | 118.45     | 24.01                 | 118.70     |
|      | 4      | 3             | 2               | 25.07                 | 121.69                 | 25.11                          | 122.72     | 25.40                 | 121.95     |
|      | 8      | 3             | 2               | 25.82                 | 119.13                 | 25.39                          | 118.50     | 25.64                 | 118.72     |
|      | 3      | 4             | 4               | 23.99                 | 119.27                 | 23.94                          | 118.84     | 24.11                 | 119.36     |
|      | 5      | 4             | 3               | 30.69                 | 121.91                 | 30.35                          | 122.93     | 30.51                 | 122.28     |
|      | 4      | 4             | 5               | 24.66                 | 118.83                 | 24.19                          | 118.24     | 24.31                 | 118.37     |
|      | 6      | 5             | 4               | 25.40                 | 120.55                 | 25.45                          | 121.71     | 25.47                 | 121.07     |
|      | 5      | 6             | 6               | 24.52                 | 120.63                 | 24.63                          | 120.06     | 24.48                 | 120.56     |
|      | 7      | 1             | 2               | 25.75                 | 119.09                 | 25.34                          | 118.57     | 25.65                 | 119.03     |
|      | 8      | 3             | 4               | 25.85                 | 119.19                 | 25.36                          | 118.79     | 25.65                 | 119.34     |
|      | 9      | 5             | 4               | 25.82                 | 118.95                 | 25.42                          | 118.18     | 25.56                 | 118.36     |
|      | 9      | 5             | 6               | 25.75                 | 120.51                 | 25.21                          | 120.12     | 25.42                 | 120.57     |
| tors | siona  | l rot         | ation           | k <sub>o</sub> -anion | k <sub>o</sub> -cation | n k <sub>ø</sub> -n            | eutral     | γ                     | n          |
| 1    | 2      | 2             | 1               | 0.368                 | 0.366                  | 0.                             | 384        | 180.0                 | 2          |
| 1    | 2      | 2             | 3               | 0.327                 | 0.325                  | 0.                             | 338        | 180.0                 | 2          |
| 1    | 2      | 3             | 4               | 0.444                 | 0.449                  | 0.                             | 446        | 180.0                 | 2          |
| 1    | 2      | 3             | 8               | 0.521                 | 0.537                  | 0.                             | 533        | 180.0                 | 2          |
| 10   | 6      | 5             | 4               | 0.615                 | 0.675                  | 0.                             | 677        | 180.0                 | 2          |
| 10   | 6      | 5             | 9               | 0.625                 | 0.742                  | 0.                             | 718        | 180.0                 | 2          |
| 10   | 6      | 6             | 5               | 0.563                 | 0.614                  | 0.                             | 577        | 180.0                 | 2          |
| 10   | 6      | 6             | 10              | 0.560                 | 0.710                  | 0.                             | 634        | 180.0                 | 2          |
| 2    | 2      | 1             | 2               | 0.404                 | 0.485                  | 0.                             | 481        | 180.0                 | 2          |
| 2    | 2      | 1             | 7               | 0.450                 | 0.497                  | 0.                             | 489        | 180.0                 | 2          |
| 2    | 3      | 4             | 4               | 0.441                 | 0.478                  | 0.                             | 486        | 180.0                 | 2          |
| 2    | 2      | 3             | 4               | 0.417                 | 0.490                  | 0.                             | 479        | 180.0                 | 2          |
| 2    | 3      | 4             | 5               | 0.436                 | 0.482                  | 0.                             | 493        | 180.0                 | 2          |
| 2    | 2      | 3             | 8               | 0.455                 | 0.508                  | 0.                             | 480        | 180.0                 | 2          |
| 2    | 2      | 1             | 2               | 0.402                 | 0.483                  | 0.                             | 479        | 180.0                 | 2          |

| 3 | 2   | 1 | 2 | 0.426 | 0.465  | 0.468  | 180.0 | 2 |
|---|-----|---|---|-------|--------|--------|-------|---|
| 3 | 2   | 1 | 7 | 0.504 | 0.545  | 0.545  | 180.0 | 2 |
| 3 | 2   | 2 | 3 | 0.353 | 0.389  | 0.378  | 180.0 | 2 |
| 3 | 4   | 4 | 3 | 0.396 | 0.361  | 0.392  | 180.0 | 2 |
| 3 | 4   | 4 | 5 | 0.334 | 0.343  | 0.342  | 180.0 | 2 |
| 3 | 4   | 5 | 6 | 0.460 | 0.431  | 0.431  | 180.0 | 2 |
| 3 | 4   | 5 | 9 | 0.531 | 0.543  | 0.532  | 180.0 | 2 |
| 4 | 4   | 3 | 8 | 0.472 | 0.499  | 0.507  | 180.0 | 2 |
| 4 | 5   | 6 | 6 | 0.648 | 0.638  | 0.650  | 180.0 | 2 |
| 4 | 4   | 5 | 6 | 0.492 | 0.521  | 0.512  | 180.0 | 2 |
| 4 | 4   | 5 | 9 | 0.486 | 0.530  | 0.492  | 180.0 | 2 |
| 5 | 4   | 3 | 8 | 0.509 | 0.568  | 0.566  | 180.0 | 2 |
| 5 | 4   | 4 | 5 | 0.368 | 0.413  | 0.384  | 180.0 | 2 |
| 5 | 6   | 6 | 5 | 0.674 | 0.649  | 0.665  | 180.0 | 2 |
| 5 | 4   | 3 | 8 | 0.508 | 0.568  | 0.566  | 180.0 | 2 |
| 6 | 5   | 4 | 3 | 0.462 | 0.432  | 0.432  | 180.0 | 2 |
| 6 | 6   | 5 | 9 | 0.602 | 0.619  | 0.627  | 180.0 | 2 |
|   | PFP | ) |   |       | 8F<br> | 9F 10F | F F   |   |



| bond  |                                                                                                                 | kh                                                                                                                                                                                                                                                                        | $\mathbf{b}_0$                                                                                                                                                                                                                                                                                                                                                                                               | kh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | bo                                                                                                                                                                                                                                                                                                                                                                                    | kh                                                     | $\mathbf{b}_0$                                         |
|-------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| retch | ing                                                                                                             | 0                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                      |                                                        |
| 1     | 7                                                                                                               | 456.6                                                                                                                                                                                                                                                                     | 1.3472                                                                                                                                                                                                                                                                                                                                                                                                       | 519.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.3182                                                                                                                                                                                                                                                                                                                                                                                | 488.7                                                  | 1.3325                                                 |
| 2     | 8                                                                                                               | 451.2                                                                                                                                                                                                                                                                     | 1.3473                                                                                                                                                                                                                                                                                                                                                                                                       | 501.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.3244                                                                                                                                                                                                                                                                                                                                                                                | 477.8                                                  | 1.3360                                                 |
| 4     | 9                                                                                                               | 433.0                                                                                                                                                                                                                                                                     | 1.3538                                                                                                                                                                                                                                                                                                                                                                                                       | 496.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.3222                                                                                                                                                                                                                                                                                                                                                                                | 467.5                                                  | 1.3373                                                 |
| 6     | 10                                                                                                              | 430.3                                                                                                                                                                                                                                                                     | 1.3552                                                                                                                                                                                                                                                                                                                                                                                                       | 501.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.3194                                                                                                                                                                                                                                                                                                                                                                                | 469.0                                                  | 1.3358                                                 |
| 1     | 2                                                                                                               | 491.5                                                                                                                                                                                                                                                                     | 1.3703                                                                                                                                                                                                                                                                                                                                                                                                       | 475.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.3773                                                                                                                                                                                                                                                                                                                                                                                | 523.5                                                  | 1.3602                                                 |
| 2     | 3                                                                                                               | 394.4                                                                                                                                                                                                                                                                     | 1.4223                                                                                                                                                                                                                                                                                                                                                                                                       | 400.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.4191                                                                                                                                                                                                                                                                                                                                                                                | 379.8                                                  | 1.4333                                                 |
| 1     | 1                                                                                                               | 410.4                                                                                                                                                                                                                                                                     | 1.4066                                                                                                                                                                                                                                                                                                                                                                                                       | 407.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.4093                                                                                                                                                                                                                                                                                                                                                                                | 387.4                                                  | 1.4222                                                 |
| 3     | 4                                                                                                               | 433.3                                                                                                                                                                                                                                                                     | 1.4011                                                                                                                                                                                                                                                                                                                                                                                                       | 427.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.4046                                                                                                                                                                                                                                                                                                                                                                                | 467.6                                                  | 1.3875                                                 |
| 3     | 3                                                                                                               | 294.4                                                                                                                                                                                                                                                                     | 1.4516                                                                                                                                                                                                                                                                                                                                                                                                       | 300.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.4475                                                                                                                                                                                                                                                                                                                                                                                | 289.7                                                  | 1.4559                                                 |
| 4     | 5                                                                                                               | 426.6                                                                                                                                                                                                                                                                     | 1.4055                                                                                                                                                                                                                                                                                                                                                                                                       | 426.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.4064                                                                                                                                                                                                                                                                                                                                                                                | 414.9                                                  | 1.4148                                                 |
| 5     | 6                                                                                                               | 424.7                                                                                                                                                                                                                                                                     | 1.4062                                                                                                                                                                                                                                                                                                                                                                                                       | 422.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.4080                                                                                                                                                                                                                                                                                                                                                                                | 438.4                                                  | 1.4025                                                 |
| 5     | 5                                                                                                               | 293.0                                                                                                                                                                                                                                                                     | 1.4580                                                                                                                                                                                                                                                                                                                                                                                                       | 299.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.4530                                                                                                                                                                                                                                                                                                                                                                                | 298.9                                                  | 1.4530                                                 |
| angle | e                                                                                                               | 1.                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                            | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                     | 1-                                                     | 0                                                      |
| endi  | ng                                                                                                              | κ <sub>θ</sub>                                                                                                                                                                                                                                                            | θ <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                                               | κ <sub>θ</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | θ <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                        | κ <sub>θ</sub>                                         | θ <sub>0</sub>                                         |
| 2     | 8                                                                                                               | 46.33                                                                                                                                                                                                                                                                     | 117.17                                                                                                                                                                                                                                                                                                                                                                                                       | 45.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 117.97                                                                                                                                                                                                                                                                                                                                                                                | 45.94                                                  | 118.27                                                 |
| 2     | 8                                                                                                               | 44.40                                                                                                                                                                                                                                                                     | 121.21                                                                                                                                                                                                                                                                                                                                                                                                       | 44.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 121.32                                                                                                                                                                                                                                                                                                                                                                                | 44.07                                                  | 120.72                                                 |
| 2     | 3                                                                                                               | 26.05                                                                                                                                                                                                                                                                     | 121.63                                                                                                                                                                                                                                                                                                                                                                                                       | 25.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120.72                                                                                                                                                                                                                                                                                                                                                                                | 25.98                                                  | 121.02                                                 |
| 1     | 7                                                                                                               | 39.00                                                                                                                                                                                                                                                                     | 120.79                                                                                                                                                                                                                                                                                                                                                                                                       | 39.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120.52                                                                                                                                                                                                                                                                                                                                                                                | 39.24                                                  | 121.13                                                 |
| 1     | 7                                                                                                               | 38.44                                                                                                                                                                                                                                                                     | 118.90                                                                                                                                                                                                                                                                                                                                                                                                       | 38.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 118.90                                                                                                                                                                                                                                                                                                                                                                                | 38.80                                                  | 118.13                                                 |
|       | bonc<br>retch<br>1<br>2<br>4<br>6<br>1<br>2<br>1<br>3<br>4<br>5<br>5<br>angle<br>endin<br>2<br>2<br>2<br>1<br>1 | $\begin{array}{rrr} \text{bond} \\ \hline retching \\ \hline 1 & 7 \\ 2 & 8 \\ 4 & 9 \\ 6 & 10 \\ 1 & 2 \\ 2 & 3 \\ 1 & 1 \\ 3 & 4 \\ 3 & 3 \\ 4 & 5 \\ 5 & 6 \\ 5 & 5 \\ \hline angle \\ \hline ending \\ \hline 2 & 8 \\ 2 & 3 \\ 1 & 7 \\ 1 & 7 \\ \hline \end{array}$ | $\begin{array}{c c} \text{bond} & k_b \\ \hline \\ \hline \text{retching} & k_b \\ \hline \\ \hline 1 & 7 & 456.6 \\ 2 & 8 & 451.2 \\ 4 & 9 & 433.0 \\ 6 & 10 & 430.3 \\ 1 & 2 & 491.5 \\ 2 & 3 & 394.4 \\ 1 & 1 & 410.4 \\ 3 & 4 & 433.3 \\ 3 & 3 & 294.4 \\ 4 & 5 & 426.6 \\ 5 & 6 & 424.7 \\ 5 & 5 & 293.0 \\ \hline \\ $ | $\begin{array}{c c} \text{bond} & k_b & b_0 \\ \hline retching & k_b & b_0 \\ \hline 1 & 7 & 456.6 & 1.3472 \\ 2 & 8 & 451.2 & 1.3473 \\ 4 & 9 & 433.0 & 1.3538 \\ 6 & 10 & 430.3 & 1.3552 \\ 1 & 2 & 491.5 & 1.3703 \\ 2 & 3 & 394.4 & 1.4223 \\ 1 & 1 & 410.4 & 1.4066 \\ 3 & 4 & 433.3 & 1.4011 \\ 3 & 3 & 294.4 & 1.4516 \\ 4 & 5 & 426.6 & 1.4055 \\ 5 & 6 & 424.7 & 1.4062 \\ 5 & 5 & 293.0 & 1.4580 \\ \hline angle & k_{\theta} & \theta_0 \\ \hline 2 & 8 & 46.33 & 117.17 \\ 2 & 8 & 44.40 & 121.21 \\ 2 & 3 & 26.05 & 121.63 \\ 1 & 7 & 39.00 & 120.79 \\ 1 & 7 & 38.44 & 118.90 \\ \hline \end{array}$ | bond $k_b$ $b_0$ $k_b$ 17456.61.3472519.228451.21.3473501.149433.01.3538496.6610430.31.3552501.012491.51.3703475.323394.41.4223400.911410.41.4066407.934433.31.4011427.433294.41.4516300.345426.61.4055426.656424.71.4062422.255293.01.4580299.8angle $k_{\theta}$ $\theta_0$ $k_{\theta}$ 2846.33117.1745.922844.40121.2144.192326.05121.6325.881739.00120.7939.191738.44118.9038.82 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

| _    |      |       |       |                   |                      |                      |        |       |        |
|------|------|-------|-------|-------------------|----------------------|----------------------|--------|-------|--------|
|      | 1    | 1     | 2     | 25.56             | 120.31               | 25.45                | 120.58 | 25.41 | 120.74 |
|      | 2    | 3     | 4     | 39.09             | 123.88               | 39.69                | 122.67 | 39.65 | 123.08 |
|      | 2    | 3     | 3     | 25.58             | 118.07               | 26.06                | 118.71 | 25.80 | 118.25 |
|      | 3    | 3     | 4     | 25.76             | 118.07               | 25.84                | 118.63 | 26.04 | 118.68 |
|      | 3    | 4     | 9     | 53.66             | 117.29               | 54.33                | 118.20 | 54.59 | 118.49 |
|      | 5    | 4     | 9     | 53.03             | 118.60               | 53.96                | 118.89 | 54.04 | 118.32 |
|      | 3    | 4     | 5     | 26.07             | 124.12               | 26.11                | 122.91 | 26.42 | 123.19 |
|      | 4    | 5     | 6     | 41.25             | 124.30               | 41.52                | 123.01 | 42.27 | 123.40 |
|      | 4    | 5     | 5     | 25.96             | 117.82               | 26.46                | 118.46 | 26.69 | 118.14 |
|      | 5    | 5     | 6     | 26.08             | 117.88               | 26.37                | 118.54 | 26.77 | 118.47 |
|      | 5    | 6     | 10    | 54.25             | 117.88               | 55.48                | 118.54 | 55.70 | 118.47 |
|      | 5    | 6     | 5     | 25.89             | 124.24               | 26.09                | 122.92 | 26.47 | 123.06 |
| tors | iona | l rot | ation | $k_{\phi}$ -anion | k <sub>∳</sub> -cati | on k <sub>ø</sub> -n | eutral | γ     | n      |
| 7    | 1    | 2     | 8     | 0.847             | 0.981                | 0.9                  | 975    | 180.0 | 2      |
| 1    | 1    | 2     | 8     | 0.609             | 0.639                | 0.0                  | 641    | 180.0 | 2      |
| 7    | 1    | 2     | 3     | 0.676             | 0.750                | 0.                   | 752    | 180.0 | 2      |
| 1    | 1    | 2     | 3     | 0.462             | 0.449                | 0.4                  | 451    | 180.0 | 2      |
| 8    | 2    | 3     | 3     | 0.554             | 0.615                | 5 0.:                | 556    | 180.0 | 2      |
| 8    | 2    | 3     | 4     | 0.532             | 0.580                | ) 0.:                | 544    | 180.0 | 2      |
| 1    | 2    | 3     | 3     | 0.347             | 0.369                | 0.                   | 357    | 180.0 | 2      |
| 1    | 2    | 3     | 4     | 0.400             | 0.385                | 5 0                  | 377    | 180.0 | 2      |
| 7    | 1    | 1     | 7     | 0.699             | 0.901                | 0.                   | 769    | 180.0 | 2      |
| 2    | 1    | 1     | 7     | 0.585             | 0.675                | 5 0.0                | 616    | 180.0 | 2      |
| 2    | 1    | 1     | 2     | 0.465             | 0.449                | 0.4                  | 453    | 180.0 | 2      |
| 2    | 3    | 4     | 9     | 0.508             | 0.610                | ) 0.0                | 604    | 180.0 | 2      |
| 2    | 3    | 4     | 5     | 0.353             | 0.418                | B 0.4                | 420    | 180.0 | 2      |
| 3    | 3    | 4     | 9     | 0.504             | 0.560                | ) 0.:                | 566    | 180.0 | 2      |
| 3    | 3    | 4     | 5     | 0.307             | 0.365                | 5 0                  | 367    | 180.0 | 2      |
| 2    | 3    | 3     | 2     | 0.241             | 0.291                | 0.2                  | 265    | 180.0 | 2      |
| 2    | 3    | 3     | 4     | 0.279             | 0.295                | 5 0.2                | 290    | 180.0 | 2      |
| 4    | 3    | 3     | 4     | 0.256             | 0.231                | 0.2                  | 257    | 180.0 | 2      |
| 9    | 4    | 5     | 6     | 0.506             | 0.592                | 2 0.:                | 558    | 180.0 | 2      |
| 9    | 4    | 5     | 5     | 0.497             | 0.584                | 0.:                  | 539    | 180.0 | 2      |
| 3    | 4    | 5     | 6     | 0.357             | 0.385                | 5 0                  | 376    | 180.0 | 2      |
| 3    | 4    | 5     | 5     | 0.283             | 0.386                | <b>6</b> 0.1         | 372    | 180.0 | 2      |
| 4    | 5    | 6     | 10    | 0.471             | 0.594                | 0.:                  | 569    | 180.0 | 2      |
| 4    | 5    | 6     | 5     | 0.327             | 0.396                | <b>6</b> 0           | 391    | 180.0 | 2      |
| 5    | 5    | 6     | 10    | 0.467             | 0.565                | 5 0.:                | 542    | 180.0 | 2      |
| 5    | 5    | 6     | 5     | 0.257             | 0.379                | 0                    | 370    | 180.0 | 2      |
| 4    | 5    | 5     | 4     | 0.211             | 0.271                | 0.2                  | 264    | 180.0 | 2      |
| 4    | 5    | 5     | 6     | 0.256             | 0.260                | 0.2                  | 270    | 180.0 | 2      |
| 6    | 5    | 5     | 6     | 0.223             | 0.248                | <u> </u>             | 265    | 180.0 | 2      |

**Table S2.** The electron couplings for ET and HT reactions based on the optimized neutral supercells and containing electron/hole supercells.

The sizes of supercells are defined in main text. The electron couplings are calculated by isolated orbitals methods as our previous paper[1, 2]. The P1, P2 and P3 pathways are the same directions described in Figure 4 of main text. The optimized center-to-center distances of the closest channels in ab-plane of crystals also are listed in Å.

|     |    |                   | H <sub>AD</sub>  (    | (meV)             |                       | D       | istance(Å | <b>A</b> ) |
|-----|----|-------------------|-----------------------|-------------------|-----------------------|---------|-----------|------------|
|     |    | Hole <sup>a</sup> | electron <sup>a</sup> | hole <sup>b</sup> | electron <sup>c</sup> | Neutral | HT        | ET         |
| NAP | P1 | 19.7              | 47.8                  | 14.6              | 39.8                  | 5.03    | 5.08      | 5.18       |
|     | P2 | 19.7              | 47.8                  | 15.1              | 40.8                  | 5.03    | 5.10      | 5.02       |
|     | P3 | 44.1              | 30.2                  | 43.9              | 30.7                  | 5.94    | 5.97      | 5.95       |
| PEN | P1 | 102.2             | 102.9                 | 84.7              | 67.5                  | 4.69    | 4.75      | 5.05       |
|     | P2 | 35.1              | 46.6                  | 18.8              | 35.2                  | 6.24    | 6.38      | 6.47       |
|     | P3 | 59.5              | 103.6                 | 72.4              | 77.2                  | 5.16    | 5.35      | 5.34       |
| PFN | P1 | 33.9              | 29.4                  | 12.4              | 42.2                  | 5.00    | 5.09      | 4.96       |
|     | P2 | 5.22              | 19.4                  | 12.4              | 8.2                   | 6.49    | 6.82      | 6.29       |
|     | P3 | 5.22              | 19.5                  | 7.5               | 17.3                  | 6.49    | 6.76      | 6.40       |
| PFP | P1 | 155.9             | 93.9                  | 80.3              | 129.2                 | 4.49    | 4.67      | 4.43       |
|     | P2 | 1.9               | 3.1                   | 4.7               | 3.8                   | 6.15    | 6.14      | 6.24       |
|     | P3 | 1.9               | 3.1                   | 3.6               | 2.6                   | 6.15    | 6.16      | 6.23       |

<sup>a</sup>, <sup>b</sup> and <sup>c</sup> mean that H<sub>AD</sub>s are calculated on the basis of optimized supercells in neutral, hole-transfer and electron-transfer states, respectively.

# Table S3. Electron-vibration couplings for some significant vibrations whose $\lambda_i$ >5cm<sup>-1</sup> during ET and HT processes in NAP molecule.

| HT             | Netrual     | HT             | Cation      | ET             | Neutral     | ET             | Anion       |
|----------------|-------------|----------------|-------------|----------------|-------------|----------------|-------------|
| ω <sub>i</sub> | $\lambda_i$ |
| 520            | 23.3        | 515            | 24.7        | 520            | 244.8       | 511            | 235.9       |
| 1184           | 31.3        | 1065           | 14.8        | 773            | 38.3        | 749            | 51.6        |
| 1399           | 274.9       | 1204           | 35.0        | 1184           | 56.7        | 1051           | 19.1        |
| 1490           | 37.6        | 1405           | 352.4       | 1399           | 470.3       | 1157           | 35.6        |
| 1615           | 419.0       | 1500           | 31.5        | 1615           | 299.7       | 1366           | 380.8       |
|                |             | 1623           | 285.6       | 3188           | 6.1         | 1466           | 7.2         |
|                |             |                |             |                |             | 1597           | 303.5       |
|                |             |                |             |                |             | 3141           | 7.8         |

| HT   | Netrual     | HT             | Cation      | ET             | Neutral     | ET             | Anion       |
|------|-------------|----------------|-------------|----------------|-------------|----------------|-------------|
| ω    | $\lambda_i$ | ω <sub>i</sub> | $\lambda_i$ | ω <sub>i</sub> | $\lambda_i$ | ω <sub>i</sub> | $\lambda_i$ |
| 264  | 8.3         | 263            | 8.0         | 264            | 164.1       | 263            | 145.1       |
| 1019 | 6.6         | 1039           | 4.3         | 616            | 28          | 616            | 27.0        |
| 1184 | 15.7        | 1196           | 26.8        | 762            | 10.3        | 753            | 8.8         |
| 1207 | 59.6        | 1218           | 57.0        | 1184           | 26.2        | 796            | 5.9         |
| 1411 | 110.7       | 1329           | 6.0         | 1207           | 71.2        | 1170           | 26.4        |
| 1435 | 15.5        | 1411           | 4.5         | 1411           | 154.5       | 1208           | 60.6        |
| 1558 | 136.2       | 1427           | 139.9       | 1435           | 47.8        | 1312           | 7.0         |
| 1577 | 20.6        | 1549           | 81.9        | 1493           | 6.5         | 1393           | 8.9         |
|      |             | 1578           | 55.5        | 1558           | 25.3        | 1411           | 199.9       |
|      |             |                |             | 1577           | 11.1        | 1535           | 33.4        |
|      |             |                |             |                |             | 1564           | 8.6         |

**Table S4**. Electron-vibration couplings for some significant vibrations whose  $\lambda_i$ >5cm<sup>-1</sup> during ET and HT processes in PEN molecule.

**Table S5.** Electron-vibration couplings for some significant vibrations whose  $\lambda_i > 5$ cm<sup>-1</sup> during ET and HT processes in PFN molecule.

| HT             | Netrual     | HT             | Cation      | ET             | Neutral     | ET             | Anion |
|----------------|-------------|----------------|-------------|----------------|-------------|----------------|-------|
| ω <sub>i</sub> | $\lambda_i$ | ω <sub>i</sub> | $\lambda_i$ | ω <sub>i</sub> | $\lambda_i$ | ω <sub>i</sub> | λ     |
| 277            | 21.6        | 278            | 14.6        | 277            | 2.0         | 269            | 4.6   |
| 296            | 16.8        | 296            | 17.8        | 296            | 183         | 288            | 160.6 |
| 390            | 36.5        | 390            | 37.8        | 390            | 155.3       | 381            | 144.7 |
| 511            | 132.3       | 513            | 128.3       | 511            | 321.1       | 498            | 333.7 |
| 1083           | 52.6        | 1113           | 51.7        | 1083           | 8.8         | 1035           | 1.6   |
| 1252           | 142.6       | 1300           | 128         | 1252           | 283.8       | 1194           | 248.4 |
| 1386           | 54          | 1400           | 240.2       | 1386           | 894.5       | 1373           | 585.6 |
| 1531           | 358         | 1571           | 774.9       | 1531           | 230.4       | 1504           | 105.7 |
| 1653           | 917.8       | 1644           | 333         | 1653           | 99.2        | 1658           | 458.4 |

**Table S6**.Electron-vibration couplings for some significant vibrations whose  $\lambda_i$ >5cm<sup>-1</sup> during ET and HT processes in PFP molecule.

| HT             | Netrual     | HT             | Cation      | ET             | Neutral     | ET             | Anion       |
|----------------|-------------|----------------|-------------|----------------|-------------|----------------|-------------|
| ω <sub>i</sub> | $\lambda_i$ |
| 177            | 3.7         | 177            | 3.3         | 177            | 131.3       | 176            | 128.5       |

| 281  | 5.2   | 282  | 5     | 281  | 19.3  | 278  | 21.1  |
|------|-------|------|-------|------|-------|------|-------|
| 492  | 76.9  | 494  | 76.6  | 344  | 8.7   | 344  | 8.8   |
| 706  | 28    | 712  | 29.3  | 454  | 10.4  | 451  | 12.9  |
| 1019 | 12.5  | 1027 | 15.2  | 492  | 14.3  | 487  | 10.4  |
| 1121 | 9.3   | 1149 | 9.4   | 706  | 11.1  | 697  | 13.3  |
| 1257 | 130.2 | 1285 | 176.3 | 1019 | 14    | 989  | 10.3  |
| 1363 | 100.1 | 1377 | 144   | 1121 | 6.3   | 1090 | 6.8   |
| 1401 | 75.4  | 1411 | 19.5  | 1222 | 10.3  | 1196 | 7.3   |
| 1503 | 71.5  | 1445 | 33.3  | 1257 | 233.2 | 1227 | 224.6 |
| 1572 | 90.4  | 1520 | 40.2  | 1363 | 448.6 | 1367 | 279.7 |
| 1628 | 344.6 | 1554 | 80.6  | 1401 | 21.9  | 1396 | 168.6 |
|      |       | 1620 | 333   | 1503 | 22.3  | 1442 | 5.4   |
|      |       |      |       | 1572 | 10.5  | 1514 | 43    |
|      |       |      |       | 1628 | 30.8  | 1546 | 8.6   |
|      |       |      |       |      |       | 1604 | 12.8  |

**Table S7.** The effective vibration frequency and its Huang-Ryhs factors for ET and HT reactions under the one-mode approximation.

 $\omega_{e\!f\!f} = \sum \omega_i S_i \ / \sum S_i$ 

 $\mathbf{S}_{eff} = \lambda_{int} / \mathbf{h}\omega_{eff}$   $\lambda_{int} = \sum \mathbf{h}\omega_i S_i$ 

|     |                                 | Hole                        |                      | electron                        |           |                      |  |
|-----|---------------------------------|-----------------------------|----------------------|---------------------------------|-----------|----------------------|--|
|     | $\omega_{\rm eff}(\rm cm^{-1})$ | $\mathbf{S}_{\mathbf{eff}}$ | $\lambda_{int}(meV)$ | $\omega_{\rm eff}(\rm cm^{-1})$ | $S_{eff}$ | $\lambda_{int}(meV)$ |  |
| NAP | 1412                            | 1.1                         | 191.1                | 1008                            | 2.2       | 268.7                |  |
| PEN | 1328                            | 0.58                        | 95.6                 | 622                             | 1.7       | 134.3                |  |
| PFN | 1172                            | 2.95                        | 429.4                | 794                             | 5.32      | 523.4                |  |
| PFP | 1175                            | 1.63                        | 238.1                | 660                             | 2.98      | 243.6                |  |

**Table S8.** The reorganization energies including internal and external contributions

 for different CT channels.

|     |    | $\lambda_{int}(meV)$ |          | $\lambda_{\text{ext}}$ (meV) |          | $\lambda_{tot}(meV)$ |          |
|-----|----|----------------------|----------|------------------------------|----------|----------------------|----------|
|     |    | Hole                 | Electron | hole                         | electron | hole                 | electron |
| NAP | P1 | 197.6                | 243.6    | 29.9                         | 226.8    | 227.4                | 470.4    |
|     | P2 | 198.7                | 247.2    | 35.8                         | 224.8    | 234.5                | 472.0    |
|     | P3 | 198.6                | 246.9    | 25.8                         | 251.3    | 224.4                | 498.2    |
| PEN | P1 | 115.3                | 132.8    | 31.1                         | 219.0    | 146.5                | 351.8    |
|     | P2 | 113.1                | 137.5    | 50.4                         | 214.3    | 163.4                | 351.8    |
|     | P3 | 112.1                | 141.9    | 15.3                         | 225.8    | 127.4                | 367.7    |
| PFN | P1 | 443.6                | 511.6    | 71.2                         | 21.2     | 514.8                | 532.8    |
|     | P2 | 447.8                | 516.6    | 119.9                        | 55.5     | 567.7                | 572.2    |

|     | P3 | 444.4 | 511.6 | 126.3 | 58.7  | 570.7 | 570.3 |
|-----|----|-------|-------|-------|-------|-------|-------|
| PFP | P1 | 277.5 | 272.4 | 161.9 | 131.2 | 439.4 | 403.6 |
|     | P2 | 272.6 | 279.0 | 157.6 | 143.0 | 430.2 | 422.0 |
|     | P3 | 276.7 | 294.3 | 137.1 | 122.9 | 413.8 | 417.2 |

- 1. Yin, S. and Y. Lv, *Modeling hole and electron mobilities in pentacene abplane*. Organic Electronics, 2008. **9**(5): p. 852-858.
- 2. Yin, S., et al., Challenges for the Accurate Simulation of Anisotropic Charge Mobilities through Organic Molecular Crystals: The bet-Phase of mer-Tris(8hydroxyquinolinato)aluminum(III) (Alq3) Crystal. The Journal of Physical Chemistry C, 2012. **116**(28): p. 14826-14836.