Examination of Aggregation Induced Enhanced Emission in a Propeller Shaped Chiral- Nonconjugated Blue Emitter from Restricted Intramolecular Rotation and *J Type* $\pi \cdots \pi$ Stacking Interactions

Gül Yakalı^{*,*}

[†]Department of Engineering Sciences, Faculty of Engineering, Izmir Katip Celebi University, Cigli, 35620 Izmir, Turkey

Table of Figures

Page No

Figure S1. Thermogravimetric analysis of the compound	.3
Figure S2. Cyclic voltammogram of the compound recorded in 0.1 M TBAPF6 in dichloromethane	
solution at a scan rate of 100 mV s-1	.4
Figure S3. The PLQY results of the molecule in solid and solution state	.4
Table S1. The crystallographic details of the compound	.5
Table S2. Selected geometric parameters obtained from SCXRD for the compound	.6
Table S3. Detailed interactions geometry of the compound	.6
Table S4. Crystallographic stacking data of the compound	.7
Table S5. Electronic properties of the compound.	.7

1. Thermogravimetric Analysis

According to thermogravimetric analysis (Figure S1), thermal decomposition onset and offset temperature of the molecule was measured approximately at 200 °C and 305 °C, respectively. Maximum degredation temperature and maximum degradation rate of the molecule were at 300°C and approximately 2.5%/°C, respectively. The molecule has single and clear degradation step like pure organic samples. According to DTG thermogram, at 98°C weight change could be melting point of the molecule. Weight loss of samples at 600°C, under nitrogen atmosphere were measured as %98.7 that residue of sample does not contain any inorganic impurities like catalyst.

Figure S1. TGA (green) and DTG (blue) curves of the molecule.

3.6 Electrochemical Studies of the Molecule

To understand the electrochemical properties of the molecule, the cyclic voltammetry (CV) analysis (Figure S2) was performed in tetrabuthylamonium hexaflourophosphate supporting electrolit at room temperature. In this study, counter, reference and working electrode are platinum wire, silver wire and glassy-carbon electrodes, respectively. The onset oxidation (E_{ox}^{onset}), reduction (E_{red}^{onset}), HOMO, LUMO and E_{gap} values of the molecule were calculated from the CV curves and are given in Table S5. The HOMO and LUMO energy level of the molecule were estimated as -6.0 eV and -1.90 eV, respectively. The LUMO energy level of the molecule was determined by using its optical band gap (E_g^{opt}). One of the most common approaches used in the determination of the optical band edge^{58,59}. The optical band gap of the molecule is 4.1 eV. All results was obtained from the given equations. These results show that the theoretical results are good agreement with the experimental electrochemical studies.

Figure S2. Cyclic voltammograms of the compound: working electrode, glassy carbon; auxiliary electrode, Pt wire; reference electrode, Ag wire.

Figure S3. Solution (left) and solid phase (right) PLQY results of the molecule.

Crystal Data				
Empirical Formula	$C_{22}H_{20}O_2S$			
Formula Weight (g/mol)	348.47			
Cell setting / Space group	monoclinic/ P21/c			
Unit cell dimensions (Å, °)	a= 18.7765(12)			
	b= 5.7331(4)			
	c= 17.6642(10)			
	β=107.791(7)			
Unit cell volume (Å ³)	1810.6(2)			
Temperature (K)	298 (2)			
Absorption coefficient (mm ⁻¹)	0.191			
Z / Density [g/cm ³]	4/ 1.2783			
F(000)	736.8			
Crystal size (mm ³)	$0.512\times0.283\times0.218$			
2θ range (°)	6.48-52.74			
h range	$-23 \rightarrow 18$			
k range	-3 ightarrow 7			
l range	$-22 \rightarrow 18$			
Reflections collected / unique	6146/3674			
Data / restrains / parameters	3674/0/227			
Goodness-of-fit on F ²	1.034			
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0416$			
	$wR_2 = 0.0861$			
R indicesall data	$R_1 = 0.0588$			
$wR_2 = 0.0962$				
Large diff. peak and hole	0.35/-0.40			

Table S1. Crystallographic details for the compound.

Parameter	Experimental	Theoretical		
<u>Bond length (Å)</u>				
S1-C8	1.8417(18)	1.874		
S1-C17	1.7801(17)	1.796		
O1-C1	1.430(2)	1.419		
O1-C2	1.373(2)	1.363		
O2-C10	1.217(2)	1.215		
C5-C8	1.512(2)	1.513		
Bond Angle (⁰)				
C17-S1-C8	100.88(8)	101.878		
C2-O1-C1	117.22(16)	118.485		
C9-C10-O2	121.34(17)	120.912		
O2-C10-C11	120.22(17)	120.424		
S1-C8-C5	106.87(11)	107.307		
S1-C8-C9	110.65(12)	111.469		
C5-C8-C9	114.36(14)	113.925		
01-C2-C7	114.95(16)	115.862		
<u>Torsion Angle $(^{0})$</u>				
S1-C8-C5-C4	74.50(18)	63.215		
C8-S1-C17-C18	103.29(15)	116.291		
C1-O1-C2-C3	-1.7(3)	-0.856		
O2-C10-C11-C16	-161.21(18)	-175.612		

Table S2. Selected interatomic distances (Å), angles and torsion angles (°) for the compound.

Table S3. Detailed interactions geometry of the compound. (Å , °)*.

Rings i-j		R_c^a	R1v ^b	$R2v^c$	α^d	β ^e	γ^f	Symmetry
	Cg1Cg3	4.7688 (11)	-1.8445(7)	4.4133(8)	50.19(9)	22.3	67.2	x, 3/2-y,1/2+z
	Cg2Cg2	4.1175(12)	3.4422(8)	3.4422(8)	0.03(10)	33.3	33.3	1-x,-1-y,1-z
Molecule	Cg3Cg1	4.6210(10)	2.1719(8)	-4.4506(7)	50.19(9)	15.6	62	x.1/2-y, -1/2+z
	Cg3Cg2	4.9930(12)	1.4286(8)	4.7652(8)	76.69(9)	17.4	73.4	1-x,1-y,1-z
C-H <i>n</i> interactions								
	X-HCg	HCg	X-HCg	XCg				
Molecule	C1-H1ACg1	2.922(9)	131.7(7)	3.632(2)				
	C21-H21Cg1 ⁱⁱ	2.953(2)	129.31(19)	3.614(2)				

Cg1 is the centroid of (C2/C7); Cg2 is the centrois of (C11-C16); Cg3 is the centroid of (C17-C22)

^a Centroid distance between ring i and ring j; ^b Vertical distance from ring centroid i to ring j; ^c Vertical distance from ring centroid j to ring i; ^d Dihedral angle between the first ring mean plane and the second ring mean plane of the partner molecule; ^e Angle between centroids of first ring and second ring mean planes; ^f Angle between the centroid of the first ring and the normal to the second ring mean plane of the partner molecule; ^g Distance between centroid of ring i and perpendicular projection of centroid of ring j on ring i.

Stacking parameters	Cg1…Cg3	Cg2···Cg2	Cg3…Cg1	Cg3····Cg2
Pitch angle (P:°)	50.19	0.03	50.19	76.69
Roll angle (R:°)	67.2	33.3	62	73.4
Pitch distance(d_p : Å)	5.71	0.02	5.54	21.05
Roll distance $(d_r: Å)$	11.3	2.70	8.68	16.7
Slipping angle (β : °)	22.3	33.3	15.6	17.4
Interplanar distance $(d_{\pi\pi}: Å)$	4.76	4.11	4.62	4.99

Table S4. Crystallographic stacking data of the compound.

 Table S5. Electronic properties of the compound.

Cyclic Vol	tammeter	Abso	orption	Theoretical Calculations		
$E_{ox}^{onset}(V)$	НОМО	LUMO (eV)	Optical Band	номо	LUMO (eV)	$\Delta \mathbf{E}$ (eV)
	(eV)		gap (eV)	(eV)		
1.65	-6.0	-1.90	4.1	-5.97	-1.76	4.15

$$I_{p} = -e(E_{1/2(ox,dye)} + 4.4) eV$$
(1)

 $E_a = -e(E_{1/2(red,dye)} + 4.4) eV$ (2)

$$E_g = I_p - E_a \tag{3}$$

$$E_g^{opt} = \frac{1241}{\lambda(nm)} \tag{4}$$