Supporting Information

Inhibitory role of excessive NH₃ in NH₃-SCR on CeWO_x at low temperatures

Kuo Liu^{a,b}, Yanlong Huo^{a,d}, Zidi Yan^{a,d}, Wenpo Shan^{c*}, Hong He^{a,c,d*}

^a State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center

for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

^b Editorial Office of Journal of Environmental Sciences, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

^c Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment,

Chinese Academy of Sciences, Xiamen 361021, China

^d University of Chinese Academy of Sciences, Beijing 100049, China

*Corresponding authors.

Fax: +86 10 62849123; Tel: +86 10 62849123;

E-mails: wpshan@iue.ac.cn (W. Shan); honghe@rcees.ac.cn (H. He)

S1 Experimental

A homogeneous precipitation method was applied to prepare $CeWO_x$ (Ce:W molar ratio 1:1), as reported in the literature.¹ In brief, an aqueous solution of ammonium tungstate ((NH₄)₁₀W₁₂O₄₁), oxalic acid (H₂C₂O₄), cerium nitrate (Ce(NO₃)₃), and urea was stirred vigorously, and then heated overnight, following by filtration, washing, drying and calcination.

The adsorption amounts of NH₃ and NO were studied by a transient response method (TRM) quantitatively at room temperature as described in our previous studies.^{2,3} Standard and fast SCR activities were tested at atmospheric pressure in a quartz flow reactor as described in a previous report,¹ applying 100 mg CeWO_x (40~60 mesh). The reaction conditions were: flow rates 500 mL min⁻¹, 500 ppm NO, 500 ppm or 1000 ppm NH₃, 5 vol.% O₂, 5% H₂O (when used) and balance N₂ for standard SCR, and 250 ppm NO, 250 ppm NO₂, 500 ppm or 1000 ppm NH₃, 5 vol.% O₂, 5% H₂O (when used) and NH₃, 5 vol.% O₂, 5% H₂O (when used) and balance N₂ for fast SCR. NH₃, NO₂, NO, and N₂O in the effluent gas were determined by a NEXUS 670-FTIR spectrometer quantitatively. The data were recorded under steady state and the NO_x conversion percentages were calculated based on the following equation:⁴

NO_x conversion =
$$\left(1 - \frac{[NO]_{out} + [NO_2]_{out}}{[NO]_{in} + [NO_2]_{in}}\right) \times 100$$

Figure S1 (a) NO adsorption at room temperature over $CeWO_x$ pre-treated in flowing 500 ppm NH₃ in N₂ until saturation and then purged by N₂, and (b) NO and 2 vol.% H₂O adsorption at room temperature over $CeWO_x$ pre-treated in 2 vol.% H₂O and then flowing 500 ppm NH₃ in N₂ until saturation and then purged by N₂.

Figure S2 NH₃ adsorption at room temperature over CeWO_x pre-treated (a) in flowing 500 ppm NO in N₂ until saturation and then purged by N₂ and (b) in flowing 500 ppm NO and 2 vol% H_2O in N₂ until saturation and then purged by N₂.

Figure S3 In situ DRIFTS results of 500 ppm NO-pretreated CeWO_x treated by NH₃ at 30 °C.

Figure S4 In situ DRIFTS results of CeWO_x treated in 500 ppm NO and 500 ppm NO + 2 vol.%

 $\rm H_2O$ after $\rm N_2$ purge, respectively, at 150 °C.

Figure S5 In situ DRIFTS results of CeWO_x treated in 500 ppm NO + 2 vol.% H₂O at 150 °C,

and then treated in 500 ppm NH₃.

	NH ₃ adsorption	NO adsorption	NO adsorption	NH ₃ adsorption
	(µmol g ⁻¹)	after NH ₃	(µmol g ⁻¹)	after NO
		adsorption		adsorption
		(µmol g ⁻¹)		(µmol g ⁻¹)
In the	160 ± 5 ª	~0	$\sim 10 \pm 2$ a	~152 ± 6
absence of				
H_2O				
In the	245 ± 6^{a}	$\sim 14 \pm 2$	$\sim 20 \pm 3$ a	$\sim 243 \pm 14$
presence of				
H ₂ O				

Table S1 NO and NH ₃ adsorption at room temperature over Ce	W(Ο) _r
---	----	---	----------------

^a data from the literature.²

References:

- 1. W.P. Shan, F.D. Liu, H. He, X.Y. Shi and C.B. Zhang, Chem. Commun. 2011, 47, 8046-8048.
- 2. K. Liu, H. He, Y.B. Yu, Z.D. Yan, W.W. Yang and W.P. Shan, J. Catal. 2019, 369, 372-381.
- 3. K. Liu, Z.D. Yan, H. He, Q.C. Feng and W.P. Shan, Catal. Sci. Technol. 2019, 9, 5593-5604.
- 4. K. Liu, F.D. Liu, L.J. Xie, W.P. Shan and H. He, Catal. Sci. Technol. 2015, 5, 2290-2299.