The preparation of AuPd/ZnO-CuO for directional oxidation of glycerol to DHA.

Gengqiang Zhao^{a,b,1}, Guandong Wu^{a,b,1}, Yanan Liu^{a,b}, Yufei He^{a,b*}, Junting Feng^{a,b}, Dianqing Li^{a,b*}

^aState Key Laboratory of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
^bBeijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
¹Gengqiang Zhao and Guandong Wu contributed equally to this work.

*Corresponding authors at: State Key Laboratory of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China. E-mail address: yfhe@mail.buct.edu.cn (Y. F. He).

Figure S1. Powder XRD patterns of AuPd/CuO, AuPd/ZnO and AuPd/ZnO-CuO supports (A), partially enlarged views (B).

Figure S2. The O_{1S} XPS spectra of AuPd/Zn₁₀Cu₁ (**A**); AuPd/Zn₁Cu₁₀ (**B**) and AuPd/Zn₁Cu₁ (**C**) catalysts.

Figure S3. EPR spectra of the catalysts.

Catalysis —	Content (%)	
	Au ⁰	Au ^{+/3+}
AuPd/ZnO-CuO	76.4	23.6
Au/ZnO-CuO	86.0	14.0

 Table S1. XPS analysis of AuPd/ZnO-CuO and Au/ZnO-CuO catalysts.