Electronic Supplementary Information

Template-free fabrication of hierarchical graphitic carbon nitride via self-assembled aggregates for enhanced photocatalytic hydrogen evolution activity under visible light

Yingchun Xia, Deqi Wang, Ruixin Jia, Gege Xu, Junjie Zhan, Yanbing Lu,* and Weijian Xu

College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China. E-mail address: yanbinglu@hnu.edu.cn

Fig. S1 Low-resolution (a) and high-resolution (b, c) SEM images of MA; low-resolution (d) and high-resolution (e, f) SEM images of commercial melamine.

Fig. S2 (a, b) FT-IR spectra of melamine, "melamine+DMSO", and MA; (c) XRD pattern of melamine and MA.

Fig. S3 Brunner Emmet Teller (BET) specific surface area of MCN and MACN.

Fig. S4 ESR spectrum of DMPO- O_2^{-*} for MACN in methanol under light irradiation.

Fig. S5 FT-IR spectra of DMSO and MACN.

Sample	τ_1 (ns)	$\tau_2(ns)$	B ₁ (%)	B ₂ (%)	τ (ns)
MACN	1.76	5.86	32.1	67.9	4.84
MCN	2.25	10.2	34.7	65.3	6.04

 Table S1 Time-resolved photoluminescence (TR-PL) of MCN and MACN.

Photocatalyst	Light source	Co-catalyst	Solution	$H_2/\mu mol \cdot h^{-1} \cdot g^{-1}$	AQE /%
$g-C_3N_4^1$	λ>420 nm	Pt	20 vol% TEOA	5289.9	32.4 (400 nm)
$g\text{-}C_3N_4/In_2O_3{}^2$	λ≥420 nm	Au	10 vol% MeOH	5648	2.5
$g-C_3N_4/$	λ>420 nm	Pt	15 vol% TEOA	792	-
graphdiyne ³					
$g-C_3N_4^4$	λ>420 nm	Ni ₂ P	10 vol% TEOA	2849.5	18.8 (420 nm)
$g-C_3N_4{}^5$	λ>420 nm	Pt	10 vol% TEOA	1619	-
$g-C_3N_4^6$	λ>420 nm	Pt	10 vol% TEOA	1540	1.1 (420 nm)
$g-C_3N_4^7$	λ>400 nm	-	TEOA	28000	23.3 (420 nm)
$g-C_3N_4{}^8$	UV-visible	Pt	10 vol% TEOA	66 (0.3 g)	-
$g-C_3N_4^9$	λ>420 nm	Pt	10 vol% TEOA	13 (0.1 g)	-
$g-C_3N_4{}^{10}$	λ≥420 nm	Pt/CoTPP	10 vol% TEOA	46.9 (0.05 g)	-
$g-C_3N_4^{11}$	λ≥400 nm	Fe ₂ N	10 vol% TEOA	88.7	-
$g-C_3N_4^{12}$	Solar light	Carbon/Pt	5 vol% TEOA	5573	-
$g-C_3N_4^{13}$	λ>420 nm	Ni	25 vol% TEOA	2989.5	-
$g-C_3N_4^{14}$	UV-visible	Cu/THPP	16.7 vol% TEOA	7.5 (0.01 g)	-
$g-C_3N_4^{15}$	λ≥420 nm	NHPI/Pt	10 vol% TEOA	1145.4	4.86 (420 nm)
$g-C_3N_4^{16}$	λ≥400 nm	Pt	10 vol% TEOA	793 (2 mg)	-
Our work	λ≥420 nm	Pt	15 vol% TEOA	164 (50 mg)	1.4%

 Table S2 Comparison of various catalysts for photocatalytic hydrogen evolution reaction.

Sample	Specific surface area $(m^2 \cdot g^{-1})$		
MCN	6.0		
MACN	35.3		

 Table S3 BET surface area of MCN and MACN.

Reference

- 1. Z. Sun, W. Wang, Q. Chen, Y. Pu, H. He, W. Zhuang, J. He and L. Huang, *Journal of Materials Chemistry A*, 2020.
- 2. R. K. Chava, J. Do and M. Kang, *Applied Catalysis B: Environmental*, 2019, 248, 538-551.
- 3. Q. Xu, B. Zhu, B. Cheng, J. Yu, M. Zhou and W. Ho, *Applied Catalysis B: Environmental*, 2019, **255**, 117770.
- 4. P. Wen, K. Zhao, H. Li, J. Li, J. Li, Q. Ma, S. M. Geyer, L. Jiang and Y. Qiu, *Journal of Materials Chemistry A*, 2020.
- 5. H. Zhang, J. Lin, Z. Li, T. Li, X. Jia, X.-L. Wu, S. Hu, H. Lin, J. Chen and J. Zhu, *Catalysis Science & Technology*, 2019, **9**, 502-508.
- H. Tang, R. Wang, C. Zhao, Z. Chen, X. Yang, D. Bukhvalov, Z. Lin and Q. Liu, *Chem. Eng. J.*, 2019, **374**, 1064-1075.
- 7. Z. Mo, H. Xu, Z. Chen, X. She, Y. Song, J. Lian, X. Zhu, P. Yan, Y. Lei and S. Yuan, *Applied Catalysis B: Environmental*, 2019, **241**, 452-460.
- 8. H. Yan, Y. Chen and S. Xu, *Int. J. Hydrogen Energy*, 2012, **37**, 125-133.
- Y. Wang, Y. Di, M. Antonietti, H. Li, X. Chen and X. Wang, *Chem. Mater.*, 2010, 22, 5119-5121.
- 10. M. Kombo, L.-B. Ma, Y.-N. Liu, X.-X. Fang, N. Ullah, A. H. Odda and A.-W. Xu, *Catalysis Science & Technology*, 2019, **9**, 2196-2202.
- W. Qi, S. Liu, F. Li, H. Jiang, Z. Cheng, S. Zhao and M. Yang, *Catalysis Science & Technology*, 2019, 9, 2571-2577.
- 12. A. M. Shaheer, P. Karthik, G. Karthik, M. Shankar and B. Neppolian, *Catalysis Science & Technology*, 2019, **9**, 3493-3503.
- M. Li, S. Song, C. Su, L. Li, Z. Yan and X. Cao, *Catalysis Science & Technology*, 2019, 9, 3828-3835.
- M. Zhang, K. Zhu, L. Qin, S.-Z. Kang and X. Li, *Catalysis Science & Technology*, 2020, 10, 1640-1649.
- 15. L.-B. Ma, K. Liang, G. Wang, X.-X. Fang, C. Ling, T. Zhao, M. Kombo, T.-Y. Cheang and A.-W. Xu, *Catalysis Science & Technology*, 2019, **9**, 5441-5446.
- R. C. Pawar, S. Kang, H. Han, H. Choi and C. S. Lee, *Catalysis Science & Technology*, 2019, 9, 1004-1012.