Supplementary material

Taming NO oxidation efficiency by γ-MnO₂ morphology regulation

Lei Chen,^a Jinping Zhang,^b Yuxin Li,^c Xiaomei Wu,^a Zaoxiao Zhang,^{a,b} Qiang Lu,^d Chi He,^{b,e,*}

^aShaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China

^b State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, China

^cKey Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China

^dNational Engineering Laboratory for biomass Power Generation Equipment, North China Electric Power University, Beijing 102206, China

^eNational Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China

*To whom correspondence should be addressed:

Tel./Fax: +86 29 82663857; E-mail: chi_he@xjtu.edu.cn (C. He)

Fig. S1 (a) N_2 adsorption-desorption isotherms and (b) pore distribution of γ -MnO₂ materials

Fig. S2 Long-term stability of NO oxidation over different nanostructured γ -MnO₂ samples.

Fig. S3 FE-SEM images of the tested $\gamma\text{-}MnO_2$ materials.

Sample	$S_{\rm BET}{}^{\rm a}\left({ m m}^2\cdot{ m g}^{-1} ight)$	$D_{\rm v}{}^{\rm b}({\rm cm}^{3}{\cdot}{\rm g}^{-1})$	$D_{\rm p}^{\rm c}$ (nm)
γ-MnO ₂ -HS	86.6	0.23	52.6
γ -MnO ₂ -SU	35.7	0.15	82.8
γ-MnO ₂ -F	9.6	0.08	166.6

Table S1. Textural properties of the prepared materials.

^a Specific surface area calculated at $P/P_0 = 0.05-0.30$; ^b Total pore volume measured at $P/P_0 =$

0.99; ° BJH pore diameter obtained from the adsorption branch.