Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supporting Information

for

Encapsulating Low-Coordinated Pt Clusters within a Metal-Organic Framework Induces Spatial Charge Separation Boosting Photocatalytic Hydrogen Evolution

Yao-Yao Wang,^a Zheng Tang,^a Xue-Yang Ji,^a Song Wang,^{*b} Zi-Shuo Yao^{*a} and Jun Tao^{*a}

- ^a Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
- ^b Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, Hubei 441053, P. R. China

E-mail: taojun@bit.edu.cn; zishuoyao@bit.edu.cn; wangsong1984@126.com.

Table of Contents

1. Table S1. ICP-MS analysis of catalysts S3
2. Table S2. Summary of some MOF-based photocatalysts S3
3. Figure S1 The PXRD patterns of PCs-U6N, Pt-U6N and CPU6NS4
4. Figure S2. SEM and TEM images of PCs@U6N and CPU6N·····S4
5. Figure S3. TEM images of PCs-U6N······S4
6. Figure S4. Pt nanoparticle size distribution in PCs-U6N······S5
8. Figure S5. TEM images of Pt-U6N······S5
9. Figure S6. Pt nanoparticle size distribution in Pt-U6N······S5
10. Figure S7. SEM and TEM images of U6N······S6
11. Figure S8. SEM and TEM images of Pt@U6N·····S6
12. Figure S9. Pt nanoparticle size distribution in Pt@U6N·····S6
13. Figure S10. SEM and TEM images of Pt/U6N······S7
14. Figure S11. Pt nanoparticle size distribution in Pt/U6N······S7

15. Figure S12. HAADF-STEM and EDX mapping of Pt@U6N·····S8
16. Figure S13. XPS spectrum of Pt@U6N·····S8
17. Figure S14. XPS spectrum of Pt/U6N······S9
18. Figure S15. The band gap of U6N, Pt/U6N, Pt@U6N and PCs@U6N······S9
19 Figure S16. The repetitive UV-vis diffuse reflectance spectra and the comparison of UV-vis diffuse
reflectance spectra of PCs@U6N, PCs-U6N, Pt-U6N and CPU6N. ·····S10
20. Figure S17. Photocurrent response and nyquist plots of electrochemical impedance spectroscopy (EIS) for
PCs@U6N, Pt@U6N, Pt/U6N and U6N. ·····S10
21. Figure S18. The photocatalytic hydrogen-production rates (a) of PCs-U6N, Pt-U6N and CPU6N; the
performance comparison (b) of PCs-U6N, Pt-U6N and CPU6N
22. Figure S19. PXRD patterns of PCs@U6N before and after HER reaction S11
23. Figure S20. TEM images of PCs@U6N after HER reaction S12
24. Figure S21. Photocatalytic hydrogen-production rates with Er B and Eo Y
25. Figure S22. Photocatalytic hydrogen-production rates with TEOA and TEA
26. Figure S23. Comparison of photocatalytic hydrogen-production rates S13
27. Figure S24. Photocatalytic hydrogen-production of PCs@U6N with various amounts of Er BS14
28. Figure S25. XPS spectrum of PCs@U6N after HER with photosensitizer S14
29. Figure S26. High-resolution XPS spectrum of PCs@U6N after recycle with Er B······S15
30. Figure S27. The Pt L ₃ -edge EXAFS of Pt foil, Pt@U6N and PCs@U6N in k spacesS16
32.References S17

Sample	Pt wt%	H_2 evolution rate (µmol g ⁻¹ h ⁻¹)		
U6N	0	1.03		
Pt/U6N	1.73	24.34		
Pt@U6N	1.81	87.24		
PCs@U6N	1.20	151.48		
Pt-U6N	1.38	8.81		
PCs-U6N	0.63	16.17		
CPU6N	0.48	6.66		

Table S1. ICP-MS analysis of catalysts

 Table S2. Summary of some MOF-based photocatalysts

Sample	Co-catalyst	Light	Sacrificial	Photosensitizer	H_2 evolution rate	TON	Reference
		source	reagent		(µmorg n)		
PCs@U6N	Pt	Visible	TEOA	Er B	36830.0	598.67	This paper
Zr-MOF	Pt	Visible	TEOA	Er B	41396.4	161.7	1
Zr-MOF	Pt	Visible	Methanol	Er B	460	17.4	2
Zr-MOF	Pt	Visible	TEOA	Rh B	116.1	2.3	3
Zr-MOF	Pt	Visible		[Ir(ppy) ₂ (bpy)]Cl		90.9	4
Cr-MOF	Pt	Visible	TEOA	Rh B	580	7.5	5
Zr-MOF	Pt	Visible	Methanol	Arene dye	1528	400	6
Hf-MOF	Pd	Visible	TEOA	None	7550	482.5	7
Ti-MOF	Pt/Au	UV-Vis	TEOA	None	1743	69.38	8
In-MOF	Pt	UV-Vis	TEOA	None	341	4.5	9

The turnover number of per hour was calculated by the equation of $TON = n(H_2)/n(Pt)$ based on the content of Pt.

Figure S1. The PXRD patterns of PCs-U6N, Pt-U6N and CPU6N.

Figure S2. SEM image (a) and TEM images of PCs@U6N (b) and CPU6N (c and d).

Figure S3. TEM images of PCs-U6N.

Figure S4. Pt nanoparticle size distribution in PCs-U6N.

Figure S5. TEM images of Pt-U6N.

Figure S6. Pt nanoparticle size distribution in Pt-U6N.

Figure S7. SEM image (a) and TEM image (b) of U6N.

Figure S8. SEM image (a) and TEM images (b-d) of Pt@U6N.

Figure S9. Pt nanoparticle size distribution in Pt@U6N.

Figure S10. SEM image (a) and TEM images (b-d) of Pt/U6N.

Figure S11. Pt nanoparticle size distribution in Pt/U6N.

Figure S12. HAADF-STEM image (a) and element mapping images (b-f) of Pt@U6N.

Figure S13. XPS survey spectrum (a) and high resolution XPS spectra of (b) C 1s, (c) N 1s, (d) O 1 s, (e) Zr 3d and (f) Pt 4f for Pt@U6N.

Figure S14. XPS survey spectrum (a) and high resolution XPS spectra of (b) C 1s, (c) N 1s, (d) O 1 s, (e) Zr 3d and (f) Pt 4f for Pt/U6N.

Figure S15. The band gap of U6N, Pt/U6N, Pt@U6N and PCs@U6N obtained through the Tauc plot method.

Figure S16. The repetitive UV-vis diffuse reflectance spectra of U6N, Pt/U6N, Pt@U6N and PCs@U6N after one month of the first test; the comparison of UV-vis diffuse reflectance spectra of PCs@U6N, PCs-U6N, Pt-U6N and CPU6N.

Figure S17. Photocurrent response and nyquist plots of electrochemical impedance spectroscopy (EIS) for PCs@U6N, Pt@U6N, Pt/U6N and U6N.

Figure S18. The photocatalytic hydrogen-production rates (a) of PCs-U6N, Pt-U6N and CPU6N; the performance comparison (b) of PCs-U6N, Pt-U6N and CPU6N.

Figure 19. The PXRD patterns of PCs@U6N before and after HER reaction without Er B.

Figure 20. (a) The TEM image (a) and HRTEM image (b) of PCs@U6N after HER reaction without photosensitizer.

Figure S21. The photocatalytic hydrogen-production rates (a) of PCs@U6N with different molecular photosensitizer and performance comparison (b).

Figure S22. The photocatalytic hydrogen-production rates (a) of PCs@U6N with different sacrificial agent and (b) performance comparison.

Figure S23. The photocatalytic hydrogen-production rates of PCs@U6N, Pt@U6N, Pt/U6N and U6N (a) and performance comparison (b) with a mass ratio (5:1) of catalyst to photosensitizer under visible light.

Figure S24. The photocatalytic hydrogen-production performance comparison of PCs@U6N with various amounts of Er B.

Figure S25. XPS spectrum of PCs@U6N after recycle used with photosensitizer.

Figure S26. High-resolution C 1s (a), O 1s (b), N 1s (c), I 3d (d), Zr 3d (e) and Pt 4f (f) XPS spectrum of PCs@U6N after recycle used with molecular photosensitizer Er B.

Figure S27. The Pt L₃-edge EXAFS of Pt foil, Pt@U6N and PCs@U6N in k spaces.

References

- 1 Y. Wang, Y. Yu, R. Li, H. Liu, W. Zhang, L. Ling, W. Duan, B. Liu, J. Mater. Chem. A. 2017, 5, 20136.
- 2 Y.-P. Yuan, L.-S. Yin, S.-W. Cao, G.-S. Xu, C.-H. Li, C. Xue, Appl. Catal. B 2015, 572, 168.
- 3 J. He, J.-Q. Wang; Y.-J. Chen, J.-P. Zhang D.-L. Duan, Y. Wang, Z. Yan, Chem. Commun. 2014, 50, 7063.
- 4 C. Wang, K. E. deKrafft, W. Lin, J. Am. Chem. Soc. 2012, 134, 7211.
- 5 M. Wen, K. Mori, T. Kamegawa, H. Yamashita, Chem. Commun. 2014, 50, 11645.
- 6 Y.-F. Chen, L.-L. Tan, J.-M. Liu, S. Qin, Z.-Q. Xie, J.-F. Huang, Y.-W. Xu, L.-M. Xiao, C.-Y. Su, *Appl. Catal. B* 2017, **206**, 426.
- 7 S. Li, H.-M. Mei, S.-L. Yao, Z.-Y. Chen, Y.-L. Lu, L. Zhang, C.-Y. Su, Chem. Sci. 2019, 10, 10577.
- 8 J. D. Xiao, L. Han, J. Luo, S. H. Yu, H. L. Jiang, Angew. Chem. Int. Ed. 2018, 57, 1103.
- 9 F. Leng, H. Liu, M. Ding, Q.-P. Lin, H.-L. Jiang, ACS Catal. 2018, 8, 4583-4590.